
PDF -10

System Reference Manual

7 J 5 gpgMHittKMtfttlitfg
'

ORDER NO. DEC-10-HGAA-D FROM PROGRAM LIBRARY, MAYNARD, MASSACHUSETTS PRICE $5.00

DIRECT COMMENTS CONCERNING THIS MANUAL TO SOFTWARE QUALITY CONTROL, MAYNARD, MASSACHUSETTS

DIGITAL EQUIPMENT CORPORATION MAYNARD, MASSACHUSETTS

April 1968

Second printing, June 1968

Changes are indicated by a

triangle (A) in the outside margin.

Copyright 1968 by

Digital Equipment Corporation

Instruction times, operating speeds and the like are

included here for reference only; they are not to be

taken as specifications.

Written and designed for Digital Equipment Corporation by William English, Wayland, Massachusetts

Manufactured in the United States of America

Contents

1 INTRODUCTION 1-1

1.1 Number System 1-4

Floating point arithmetic 1-5

1.2 Instruction Format 1-6

Effective address calculation 1-7

1.3 Memory 1-8

Memory allocation 1-9

1.4 Programming Conventions 1-10

2 CENTRAL PROCESSOR 2-1

2. 1 Half Word Data Transmission 2-2

2.2 Full Word Data Transmission 2-9

Move instructions 2-10

Pushdown list 2-12

2.3 Byte Manipulation 2-15

2.4 Logic 2-17

Shift and rotate 2-24

2.5 Fixed Point Arithmetic 2-26

Arithmetic shifting 2-3 1

2.6 Floating Point Arithmetic 2-32

Scaling 2-33

Operations with rounding 2-34

Operations without rounding 2-37

2.7 Arithmetic Testing 2-41

2.8 Logical Testing and Modification 2-47

2.9 Program Control 2-54

2.10 Unimplemented Operations 2-64

2. 1 1 Programming Examples 2-65

Double precision floating point 2-67

2.12 Input-Output 2-68

Readin mode 2-72

Console data transfers 2-73

VI

2.13 Priority Interrupt 2-73

2.14 Processor Conditions 2-78

3 BASIC IN-OUT EQUIPMENT 3-1

3.1 Paper Tape Reader 3-1

Readin mode 3-4

3.2 Paper Tape Punch 3-5

3.3 Teletype 3-7

APPENDICES

A Instruction and Device Mnemonics A 1

Numeric listing A3

Alphabetic listing A6
Device mnemonics A10

B In-out Codes Bl

Teletype code B2
Card codes B6

C Miscellany Cl

Introduction

The PDF- 10 is a general purpose, stored program computer that includes a

central processor, a memory, and a variety of peripheral equipment such as

paper tape reader and punch, teletype, card reader, line printer, DECtape,

magnetic tape, disk file and display. The central processor is the control unit

for the entire system: it governs all peripheral in-out equipment, sequences

the program, and performs all arithmetic, logical and data handling opera-

tions. The processor is connected to one or more memory units by a mem-

ory bus and to the peripheral equipment by an in-out bus. The fastest

devices, such as the disc file, although controlled by the processor over the

in-out bus, have direct access to memory over a second memory bus.

The processor handles words of thirty-six bits, which are stored in a mem-

ory with a maximum capacity of 262,144 words. Storage in memory is

usually in the form of 37-bit words, the extra bit producingoddparit^ for

the word. The bits of a word are numbered 0-35, left to right, as are the

bits in the registers that handle the words. The processor can also handle

half words, wherein the left half comprises bits 0-17, the right half, bits

18-35. Optional hardware is available for byte manipulation a byte is any

contiguous set of bits within a word. Registers that hold addresses have

eighteen bits, numbered 18-35 according to the position of the address in a

word. Words are used either as computer instructions in the program, as

addresses, or as operands (data for the program).

Of the internal registers shown in the illustration on the next page, only

PC, the 18 bit program counter, is directly relevant to the programmer. The

processor performs a program by executing instructions retrieved from the

locations addressed by PC. At the beginning of each instruction PC is incre-

mented by one so that it normally contains an address one greater than the

location of the current instruction. Sequential program flow is altered by

changing the contents of PC, either by incrementing it an extra time in a

skip instruction or by replacing its contents with the value specified by a

jump instruction. Also of importance to the programmer is the 36-bit data

switch register DS on the processor console: through this register the pro-

gram can read data supplied by the operator. The processor also contains

flags that detect various types of errors, including several types of overflow

in arithmetic and pushdown operations, and provide other information of

interest to the programmer.
The processor has other registers but the programmer is not usually con-

cerned with them except when manually stepping through a program to

debug it. By means of the address switch register AS, the operator can

1-1

1-2 INTRODUCTION

CORE MEMORY

8192 OR 16384
37-BIT WORDS

CORE MEMORY CORE MEMORY

MEMORY BUS

FAST

MEMORY

16 X36

MA
18

AS
18

PC
18

ARITHMETIC

LOGIC

(AR, BR, MQ)

IN-OUT BUS

CENTRAL
PROCESSOR

18

Ml
36

DS
36

PRIORITY
INTERRUPT

PAPER TAPE
READER

PAPER TAPE
PUNCH TELETYPE

PDP-10 SIMPLIFIED

examine the contents of, or deposit information into, any memory location;

stop or interrupt the program whenever a particular location is referenced;

and through AS the operator can supply a starting address for the program.

Through the memory indicators MI the program can display data for the

operator. The instruction register IR contains the left half of the current

instruction word, ie all but the address part. The memory address register

MA supplies the address for every memory access. The heart of the proc-

essor is the arithmetic logic, principally the 36-bit arithmetic register AR.

1-3

This register takes part in all arithmetic, logical and data handling operations;

all data transfers to and from memory, peripheral equipment and console are

made via AR. Associated with AR are an extremely fast full adder, a buffer

register BR that holds a second operand in many arithmetic and logical

instructions, a multiplier-quotient register MQ that serves primarily as an

extension of AR for handling double length operands, and smaller registers

that handle floating point exponents and control shift operations and byte

manipulation.

From the point of view of the programmer however the arithmetic logic

can be regarded as a black box. It performs almost all of the operations

necessary for the execution of a program, but it never retains any informa-

tion from one instruction to the next. Computations performed in the black

box either affect control elements such as PC and the flags, or produce
results that are always sent to memory and must be retrieved by the proc-

essor if they are to be used as operands in other instructions.

An instruction word has only one 18-bit address field for addressing any
location throughout all of memory. But most instructions have two 4-bit

fields for addressing the first sixteen memory locations. Any instruction

that requires a second operand has an accumulator address field, which can

address one of these sixteen locations as an accumulator; in other words as

though it were a result held over in the processor from some previous

instruction (the programmer usually has a choice of whether the result of the

instruction will go to the location addressed as an accumulator or to that

addressed by the 18-bit address field, or to both). Every instruction has a

4-bit index register address field, which can address fifteen of these locations

for use as index registers in modifying the 18-bit memory address (a zero

index register address specifies no indexing). Although all computations on

both operands and addresses are performed in the single arithmetic register

AR, the computer actually has sixteen accumulators, fifteen of which can

double as index registers. The factor that determines whether one of the

first sixteen locations in memory is an accumulator or an index register is

not the information it contains nor how its contents are used, but rather

how the location is addressed. There need be no difference physically be-

tween these locations and other memory locations, but an optional, fast flip-

flop memory contained in the processor can be substituted for the bottom

sixteen locations in core. This allows much quicker access to these locations

whether they are addressed as accumulators, index registers or ordinary

memory locations. They can even be addressed from the program counter,

gaining faster execution for a short but oft-repeated subroutine.

Besides the registers that enter into the regular execution of the program
and its instructions, the processor has a priority interrupt system and can

contain optional equipment to facilitate time sharing. The interrupt system
facilitates processor control of the peripheral equipment by means of a num-

ber of priority-ordered channels over which external signals may interrupt

the normal program flow. The processor acknowledges an interrupt request

by executing the instruction contained in a particular location assigned to

the channel. Assignment of channels to devices is entirely under program
control. One of the devices to which the program can assign a channel is the

processor itself, allowing internal conditions such as overflow or a parity

1-4 INTRODUCTION 1.1

error to signal the program.

The time share hardware provides memory protection and relocation.

Without time sharing, all instructions and all memory are available to the

program. Otherwise a number of programs share processor time, with each

program relocated and restricted to a specific area in core, and certain in-

structions are usually illegal. An attempt by any user to execute an illegal

instruction or address a memory location outside of his area results in a

transfer of control back to the time-sharing monitor.

1.1 NUMBER SYSTEM

The program can interpret a data word as a 36-digit, unsigned binary num-

ber, or the left and right halves of a word can be taken as separate 1 8-bit

numbers. The PDF- 1 repertoire includes instructions that effectively add

or subtract one from both halves of a word, so the right half can be used for

address modification when the word is addressed as an index register, while

the left half is used to keep a control count.

The standard arithmetic instructions in the PDF- 10 use twos comple-

ment, fixed point conventions to do binary arithmetic. In a word used as a

number, bit (the leftmost bit) represents the sign, for positive, 1 for

negative. In a positive number the remaining 35 bits are the magnitude in

ordinary binary notation. The negative of a number is obtained by taking its

twos complement. If x is an -digit binary number, its twos complement is

2"-x, and its ones complement is(2"-l)-jc, or equivalently (2"-x)
-

1.

Subtracting a number from 2"- 1 (ie, from all Is) is equivalent to perform-

ing the logical complement, ie changing all Os to Is and all Is to Os. There-

fore, to form the twos complement one takes the logical complement
(usually referred to merely as the complement) of the entire word including

the sign, and adds 1 to the result. In a negative number the sign bit is 1, and

the remaining bits are the twos complement of the magnitude.

+ 153, - +231 8 -000000000000000000000000000010011001
35

-153,0 = -231 8 =1111 111 111 111 111 111 111 111 111 101 100111

35

Zero is represented by a word containing all Os. Complementing this num-
ber produces all Is, and adding 1 to that produces all Os again. Hence there

is only one zero representation and its sign is positive. Since the numbers are

symmetrical in magnitude about a single zero representation, all even num-
bers both positive and negative end in 0, all odd numbers in 1 (a number all

Is represents
-

1). But since there are the same number of positive and nega-

tive numbers and zero is positive, there is one more negative number than

there are nonzero positive numbers. This is the most negative number and it

cannot be produced by negating any positive number (its octal representa-

1.1 NUMBER SYSTEM 1-5

tion is 400000 000000 8 and its magnitude is one greater than the largest

positive number).

If ones complements were used for negatives one could read a negative

number by attaching significance to the Os instead of the Is. In twos com-

plement notation each negative number is one greater than the complement
of the positive number of the same magnitude, so one can read a negative

number by attaching significance to the rightmost 1 and attaching signifi-

cance to the Os at the left of it (the negative number of largest magnitude has

a 1 in only the sign position). In a negative integer, Is may be discarded at

the left, just as leading Os may be dropped in a positive integer. In a negative

fraction, Os may be discarded at the right. So long as only Os are discarded,

the number remains in twos complement form because it still has a 1 that

possesses significance; but if a portion including the rightmost 1 is discarded,

the remaining part of the fraction is now a ones complement.
The computer does not keep track of a binary point the programmer

must adopt a point convention and shift the magnitude of the result to con-

form to the convention used. Two common conventions are to regard a

number as an integer (binary point at the right) or as a proper fraction

(binary point at the left); in these two cases the range of numbers repre-

sented by a single word is 235 to 2 35 -
1 or - 1 to 1 2~35

. Since multiplica-

tion and division make use of double length numbers, there are special

instructions for performing these operations with integral operands.

Floating Point Arithmetic. Optional PDF- 1 hardware is available for

processing floating point numbers. A floating point instruction interprets

bit of a word as the sign, but interprets the rest of the word as an 8-bit

exponent and a 27-bit fraction. For a positive number the sign is 0, as

before. But the contents of bits 9-35 are now interpreted only as a binary

fraction, and the contents of bits 1-8 are interpreted as an integral exponent
in excess 128 (200 8) code. Exponents from -128 to +127 are therefore

represented by the binary equivalents of to 255 (0-377 8). Floatingpoint

zero and negatives are represented in exactly the same way as in fixed point:

zero by a word containing all Os, a negative by the twos complement. A
negative number has a 1 for its sign and the twos complement of the frac-

tion, but since every fraction must ordinarily contain a 1 unless the entire

number is zero (see below), it has the ones complement of the exponent
code in bits 1-8. Since the exponent is in excess 128 code, an actual

exponent x is represented in a positive number by x + 128, in a negative

number by 127 -x. The programmer, however, need not be concerned with

these representations as the hardware compensates automatically. Eg, for

+ 153 10
= +231 8

= +.4628 X2 8 -

1-6 INTRODUCTION 1.2

the instruction that scales the exponent, the hardware interprets the integral

scale factor in standard twos complement form but produces the correct

ones complement result for the exponent.

Except in special cases the floating point instructions assume that all non-

zero operands are normalized, and they normalize a nonzero result. A
floating point number is considered normalized if the magnitude of the frac-

tion is greater than or equal to l
/2 and less than 1 . These numbers thus have a

fractional range in magnitude of 1
A. to 1 -2"27 and an exponent range of

-
1 28 to +127. The hardware may not give the correct result if the program

supplies an operand that is not normalized or that has a zero fraction with a

nonzero exponent.

The precaution about truncation given for fixed point multiplication

applies to all floating point operations as they all produce extra length

results; but here the programmer may request rounding, which automatically
restores the high order part to twos complement form if it is negative. In

division the two words of the result are quotient and remainder, but in the

other operations they form a double length number which is stored in two
accumulators if the instruction is executed in "long" mode. This number
contains a 54-bit fraction, half of which is in bits 9-35 of each word. The

sign and exponent are in bits and 1 -8 respectively of the word containing
the more significant half, and the standard twos complement is used to form

In the remaining part of the less

8 contain a number 27 less than the

exponent, but this is expressed in positive form even though bits 9-35 may
be part of a negative fraction. Eg the number 2 18 + 2~ 18 has this two-word

representation:

010

1.2 INSTRUCTION FORMAT 1-7

rest of the instruction word usually supplies information for calculating the

effective address, which is the actual address used to fetch the operand or

alter program flow. Bit 13 specifies the type of addressing, bits 14-17 spec-

ify an index register for use in address modification, and the remaining

eighteen bits (18-35) address a memory location. The instruction codes

ADDRESS TYPE

ACCUMULATOR
ADDRESS

\

INDEX REGISTER
ADDRESS

INSTRUCTION CODE

1-8 INTRODUCTION 1.3

retrieval. This process continues until some referenced location is found

with a in bit 13; the 18-bit number calculated from the X and Y parts of

this location is the effective address E.

The calculation outlined above is carried out for every instruction even

if it need not address a memory location. If the indirect bit in the instruc-

tion word is and no memory reference is necessary, then Y is not an ad-

dress. It may be a mask in some kind of test instruction, conditions to be

sent to an in-out device, or part of it may be the number of places to shift in

a shift or rotate instruction or the scale factor in a floating scale instruction.

Even when modified by an index register, bits 18-35 do not contain an ad-

dress when / is 0. But when / is 1, the number determined from bits 14-35

is an indirect address no matter what type of information the instruction

requires, and the word retrieved in any step of the calculation contains an

indirect address so long as / remains 1 . When a location is found in which /

is 0, bits 18-35 (perhaps modified by an index register) contain the desired

effective mask, effective conditions, effective shift number, or effective scale

factor. Many of the instructions that usually reference memory for an oper-

and even have an "immediate" mode in which the result of the effective

address calculation is itself used as a half word operand instead of a word

taken from the memory location it addresses.

The important thing for the programmer to remember is that the same

calculation is carried out for every instruction regardless of the type of infor-

mation that must be specified for its execution, or even if the result is

ignored. In the discussion of any instruction, E refers to the actual quantity

derived from /, X and Y and used in the execution of the instruction, be it

the entire half word as in the case of an address, immediate operand, mask or

conditions, or only part of it as in a shift number or scale factor.

1.3 MEMORY

All timing in the PDF- 10 is asynchronous. The internal timing for each in-

out device and each memory is entirely independent of the central processor.

Because core memory readout is destructive, every word read must be writ-

ten back in unless new information is to take its place. The basic read-write

cycle time of the standard core memory is either 1 .00 or 1 .65 microseconds,

but the processor need never wait the entire cycle time. To read, it waits

only until the information is available and then continues its operations

while the memory performs the write portion of the cycle; to write, it waits

only until the data is accepted, and the memory then performs an entire

cycle to clear and write. To save time in an instruction that fetches an oper-

and and then writes new data into the same location, the memory executes a

read-pause-write cycle in which it performs only the read part initially and

then completes the cycle when the processor supplies the new data.

Access times for the accumulator-index register locations are decreased

considerably by substitution of a fast memory (contained in the processor)

for the first sixteen core locations. Readout is nondestructive, so the fast

memory has no basic cycle: the processor reads a word directly, but to write

1-3 MEMORY 1-9

it must first clear the location and then load it. Access times in nanoseconds

(including 20 feet of cable delay) for the three memories are as follows.

MA 1 or MA 1 OA Core Memory (1 .00 jus)

MB 1 Core Memory (1 .65 jus)

KM 10 Fast Memory (1 8-bit address)

Read

550

600 (700)*

210

Write

200

200 (300)

210

NOTE: When a fast memory location is addressed as an accumulator or index

register, the access time is usually considerably shorter than that listed here.

From the simple addressing point of view, the entire memory is a set of

contiguous locations whose addresses range from zero to a maximum

dependent upon the capacity of the particular installation. In a system with

the greatest possible capacity, the largest address is octal 777777', decimal

262,143. (Addresses are always in octal notation unless otherwise specified.)

But the whole memory would usually be made up of a number of core mem-
ories each having a capacity of 8192 or 16,384 words. Hence a single 18-bit

address actually selects a particular memory and a specific location within it.

For an 8K memory the high order five address bits select the memory, the

remaining thirteen bits address a single location in it; selecting a 16K

memory takes four bits, leaving fourteen for the location. The times given

above assume the addressed memory is idle when access is requested. To
avoid waiting for a previously requested memory cycle to end, the program
can make consecutive requests to different memories by taking instructions

from one memory and data from another. The hardware also allows pairs

of memories to be interleaved in such a way that consecutive addresses

actually alternate between the two memories in the pair (thus increasing the

probability that consecutive references are to different memories). Appro-

priate switch settings at the memories interchange the least significant

address bits in the memory and location parts, so that in any two memories

numbered n and n + 1 where n is even, all even addresses are locations in the

first memory, all odd addresses are locations in the second. Hence memories

and 1 can be interleaved as can 6 and 7, but not 3 and 4 or 5 and 7.

Memory Allocation. The use of certain memory locations is defined by
the hardware.

Holds a pointer word during a bootstrap readin

0-17 Can be addressed as accumulators

1-17 Can be addressed as index registers

40-41 Trap for unimplemented user operations (UUOs)

42-57 Priority interrupt locations

60-61 Trap for remaining unimplemented operations: these include

the unassigned instruction codes that are reserved for future

use, and also the byte manipulation and floating point instruc-

tions when the hardware for them is not installed

140-161 Allocated to second processor if connected (same use as 40-61
for first processor)

*Numbers in parentheses are

the longer times required in

a multiprocessor system.

All information given in this

manual about memory loca-

tions 40-61 applies instead

to locations 140-161 for pro-

gramming a second central

processor connected to the

same memory.

The initial control word

address for the DF10 Data

Channel must be less than

1000.

1-10 INTRODUCTION 1.4

The assembler translates

every statement into a 36-bit

word, placing Os in all bits

whose values are unspecified.

1.4 PROGRAMMING CONVENTIONS

The computer has five instruction classes: data transmission, logical, arith-

metic, program control and in-out. The instructions in the in-out class con-

trol the peripheral equipment, and also control the priority interrupt and
time sharing, control and read the processor flags, and communicate with the

console. The next chapter describes all instructions mentioned above,

presents a general description of input-output, and describes the effects of

the in-out instructions on the processor, priority interrupt and time share

hardware. Effects of in-out instructions on particular peripheral devices are

discussed with the devices.

The MACRO-IO assembly program recognizes a number of mnemonics and
other initial symbols that facilitate constructing complete instruction words
and organizing them into a program. In particular there are mnemonics for

the instruction codes (Appendix A), which are six bits in in-out instructions,

otherwise nine or thirteen bits. Eg the mnemonic

MOVNS

assembles as 213000 000000, and

MOVNS 2570

assembles as 213000 002570. This latter word, when executed as an instruc-

tion, produces the twos complement negative of the word in memory loca-

tion 2570.

NOTE

Throughout this manual all numbers representing instruction words,

register contents, codes and addresses are always octal, and any num-
bers appearing in program examples are octal unless otherwise indi-

cated. On the other hand, the ordinary use of numbers in the text to

count steps in an operation or to specify word or byte lengths, bit

positions, exponents, etc employs standard decimal notation.

The initial symbol @ preceding a memory address places a 1 in bit 13 to

produce indirect addressing. The example given above uses direct addressing,

but

MOVNS @2570

assembles as 213020 002570, and produces indirect addressing. Placing the

number of an index register (1-17) in parentheses following the memory
address causes modification of the address by the contents of the specified

register. Hence ,

MOVNS @2570(12)

which assembles as 213032 002570, produces indexing using index register

12, and the processor then uses the modified address to continue the effec-

tive address calculation.

An accumulator address (0- 1 7) precedes the memory address part (if any)

1 .4 PROGRAMMING CONVENTIONS 1-11

and is terminated by a comma. Thus

MOVNS 4,@2570(12)

assembles as 213232 002570, which negates the word in location E and

stores the result in both E and in accumulator 4. The same procedure may
be used to place Is in bits 9-12 when these are used for something other

than addressing an accumulator, but mnemonics are available for this pur-

pose.

The device code in an in-out instruction is given in the same manner as an

accumulator address (terminated by a comma and preceding the address

part), but the number given must correspond to the octal digits in the word

(000-774). Mnemonics are however available for all standard device codes.

To control the priority interrupt system whose code is 004, one may give

CONO 4,1302

which assembles as 700600 0001302, or equivalently

CONO PI, 1302

The programming examples in this manual use the following addressing

conventions:

* A colon following a symbol indicates that it is a symbolic location name.

A: ADD 6,5704

indicates that the location that contains ADD 6,5704 may be addressed sym-

bolically as A.

* The period represents the current address, eg

ADD 5, .+2

is equivalent to

A: ADD 5,A+2

4 Square brackets specify the contents of a location, leaving the address of

the location implicit but unspecified. Eg

ADD 12,[7256004]

and

ADD 12,A

A: 7256004

are equivalent.

Anything written at the right of a semicolon is commentary that explains

the program but is not part of it.

Central Processor

This chapter describes all PDF- 10 instructions but does not discuss the

effects of those in-out instructions that address specific peripheral devices.

In the description of each instruction, the mnemonic and name are at the

top, the format is in a box below them. The mnemonic assembles to the

word in the box, where bits in those parts of the word represented by letters

assemble as Os. The letters indicate portions that must be added to the mne-

monic to produce a complete instruction word.

For many of the non-IO instructions, a description applies not to a unique

instruction with a single code in bits 0-8, but rather to an instruction set

defined as a basic instruction that can be executed in a number of modes.

These modes define properties subsidiary to the basic operation; eg in data

transmission the mode specifies which of the locations addressed by the in-

struction is the source and which the destination of the data, in test instruc-

tions it specifies the condition that must be satisfied for a jump or skip to

take place. The mnemonic given at the top is for the basic mode; mnemonics

for the other forms of the instruction are produced by appending letters

directly to the basic mnemonic. Following the description is a table giving

the mnemonics and octal codes (bits 0-8) for the various modes.

The processor execution time for each instruction is also given at the top

unless the time differs from one mode to another. The time listed is that

required for direct addressing without indexing (ie with no effective address

calculation), assuming the instruction and location E are both in the same

1.00 microsecond core memory, and that an accumulator is addressed only
if necessary and is in fast memory. The time that can be saved (if any) by

interleaving or keeping instructions and operands in different memories is

indicated either with the description or with the discussion of the modes

preceding a group of instructions. To determine the exact time required for

an instruction under any circumstances, refer to the timing chart in

Appendix C.

In a description E refers to the effective address, half word operand, mask,

conditions, shift number or scale factor calculated from the /, X and Y parts

of the instruction word. In an instruction that ordinarily references mem-

ory, a reference to E as the source of information means that the instruction

retrieves the word contained in location E; as a destination it means the in-

struction stores a word in location E. In the immediate mode of these

instructions, the effective half word operand is usually treated as a full word

that contains E in one half and zero in the other, and is represented either as

0,E or ,0 depending upon whether E is in the right or left half.

2-1

Letters representing modes

are suffixes, which produce
new mnemonics that are rec-

ognized as distinct symbols

by the assembler.

2-2 CENTRAL PROCESSOR 2.1

Most of the non-IO instructions can address an accumulator, and in the

box showing the format this address is represented by A ;
in the description,

"AC" refers to the accumulator addressed by A . "AC left" and "AC right"

refer to the two halves of AC. If an instruction uses two accumulators, these

have addresses A and ,4 + 1, where the second address is ifA is 17. In some

cases an instruction uses an accumulator only ifA is nonzero: a zero address

in bits 9-12 specifies no accumulator.

It is assumed throughout that time sharing is not in effect, and the pro-

gram is unrestricted. For completeness, however, the effects of restrictions

on particular instructions are noted; and execution times are given both for

unrestricted operation and
t
including relocation in a user program (the latter

jtime is given in parentheses). 2.15 lists all restrictions on user programs
and explains the special effects produced by certain instructions when exe-

cuted under control of the monitor while the processor is in user mode.

Some simple examples are included with the instruction descriptions, but

more complex examples using a variety of instructions are given in 2. 1 1.

2.1 HALF WORD DATA TRANSMISSION

These instructions move a half word and may modify the contents of the

other half of the destination location. There are sixteen instructions deter-

mined by which half of the source word is moved to which half of the des-

tination, and by which of four possible operations is performed on the other

half of the destination. The basic mnemonics are three letters that indicate

the transfer

HLL Left half of source to left half of destination

HRL Right half of source to left half of destination

HRR Right half of source to right half of destination

HLR Left half of source to right half of destination

plus a fourth, if necessary, to indicate the operation.

Operation Suffix Effect on Other Half ofDestination

Do nothing None

Zeros Z Places Os in all bits of the other half

Ones O Places Is in all bits of the other half

Extend E Jlgces_Jh dgn rthp leftmost b,jt) nf

Qie half word mnvpfl in all bits pf tjv'

other half. This action extends a right

half word number into a full word

number but is valid arithmetically

only for positive left half word num-

bers the right extension of a number

requires Os regardless of sign (hence

the Zeros operation should be used to

extend a left half word number).

2.1 HALF WORD DATA TRANSMISSION 2-3

An additional letter may be appended to indicate the mode, which deter-

mines the source and destination of the half word moved.

Mode

2-4

HLLOI sets AC to all Os in

the left half, all Is in the

right.

HLLO

CENTRAL PROCESSOR

Half Word Left to Left, Ones

2.1

520

2.1 HALF WORD DATA TRANSMISSION 2-5

H R LM Half Right to Left Memory

H R LS Half Right to Left Self

506 2.90 (3.01) MS

507 2.76 (2.87) jus

HRLZ Half Word Right to Left, Zeros

5 14

2-6 CENTRAL PROCESSOR 2.:

specified destination, and make all bits in the destination right half equal to

bit 18 of the source. The source is unaffected, the original contents of the

destination are lost.

H R L E Half Right to Left , Extend

HRLEI Half Right to Left, Extend, Immediate

H R LEM Half Right to Left, Extend, Memory

HRLES Half Right to Left, Extend, Self

534
2.21 (2.43) jus

535
1.36 (1.47) MS

536
2.47 (2.58) MS

537

2.76 (2.87) MS

If A is zero, HRRS is a no-op;
otherwise it is equivalent to

HRR.

HRR Half Word Right to Right

540

2.1 HALF WORD DATA TRANSMISSION 2-7

HRRO Half Word Right to Right, Ones

560

2-8 CENTRAL PROCESSOR

HLRM Half Left to Right Memory
HLRS Half Left to Right Self

2.1

546

547

2.90 (3.01)

2.76 (2.87)

HLRZI merely clears AC and

is thus equivalent to HLLZI.

HLRZ Half Word Left to Right, Zeros

554

2.2 FULL WORD DATA TRANSMISSION 2-9

bit of the source. The source is unaffected, the original contents of the

destination are lost.

HIRE Half Left to Right, Extend

HLREI Half Left to Right, Extend, Immediate

HLREM Half Left to Right, Extend, Memory

HIRES Half Left to Right, Extend, Self

574
2.21 (2.43) MS

575
1.36 (1.47) /is

576
2.47 (2.58) jus

577
2.76 (2.87) MS

HLREI is equivalent to

HLRZI (it merely clears AC).

EXAMPLES. The half word transmission instructions are very useful for

handling addresses, and they provide a convenient means of setting up an

accumulator whose right half is to be used for indexing while a control count

is kept in the left half. Eg this pair of instructions loads the 18-bit numbers
M and N into the left and right halves respectively of an accumulator that is

addressed symbolically as XR.

HRLZI
HRRI

XR,M
XR,N

Of course the source program must somewhere define the value of the

symbol XR as an octal number between 1 and 17.

Suppose that at some point we wish to use the two halves of XR inde-

pendently as operands (taken as 18-bit positive numbers) for computations.
We can begin by moving XR left to the right half of another accumulator

AC and leaving the contents of XR right alone in XR.

HLRZM
HLLI

XR,AC
XR, ;Clear XR left

It is not necessary to clear the

other half of XR when load-

ing the first half word. But

any instruction that modifies

the other half is faster than

the corresponding instruction

that does not, as the latter

must fetch the destination

word in order to save half of

it. (The difference does not

apply to self mode, for here

the source and destination are

the same.)

2.2 FULL WORD DATA TRANSMISSION

These are the instructions whose basic purpose is to move one or more full

words of data from one place to another, usually from an accumulator to a

memory location or vice versa. In a few cases instructions may perform
minor arithmetic operations, such as forming the negative or the magnitude
of the word being processed.

EXCH Exchange 2.90 (3.01) MS

250

2-10 CENTRAL PROCESSOR 2.2

The time depends on the

number and type of trans-

fers. Assuming at least one

word is moved a BLT takes

.97 (1.08) MS plus 2.26 (2.48)

jus per transfer from fast

memory to core and 2.61

(2.83) us per transfer from

core to fast memory or from

one core location to another.

BLT Block Transfer

25 1

2.2 FULL WORD DATA TRANSMISSION 2-11

each with four modes that determine the source and destination of the word

moved.

Mode

Basic

Immediate

Memory
Self

Suffix

I

M
S

Source

E
The word 0,

AC
E

Destination

AC
AC
E

E, but also AC
ifA is nonzero

Keeping instructions and op-
erands in different memories

saves .47 (.36) /is in memory
mode, .20 (.09) MS in self

mode.

When E addresses a fast

memory location, a move in-

struction takes .34 MS less in

basic mode, .46 (.35) MS less

in memory mode, .54 (.43) MS

less in self mode.

MOVE Move

200

2-12 CENTRAL PROCESSOR 2.:

MOVNI loads AC with the

negative of the word 0,E and

can set no flags.

Overflow and Carry 1 flags. (Negating the equivalent floating point -1 X 2
127

sets the flags, but this is not a normalized number.) If the source word is

zero, set Carry and Carry 1. The source is unaffected, the original contents

of the destination are lost.

MOVN Move Negative

MOVNI Move Negative Immediate

MOVNM Move Negative to Memory
MOVNS Move Negative to Self

210 2.39 (2.61) MS

211 1.54(1.65)MS

212 2.65 (2.76) MS

213 2.94 (3.05) MS

The word 0," is equivalent
to its magnitude, so MOVMI
is equivalent to MOVEI.

MOVM Move Magnitude

2 14

2.2 FULL WORD DATA TRANSMISSION 2-13

two subroutine-calling instructions that utilize a pushdown list of jump ad-

dresses [2.9] .

PUSH Push Down 3.85 (4.07)

261

2-14 CENTRAL PROCESSOR 2.2

Pushdown storage is very convenient for a program that can use data

stored in this manner as the pointer is initialized only once and only one

accumulator is required for the most complex pushdown operations. To ini-

tialize a pointer P for a list to be kept in a block of memory beginning at

BLIST and to contain at most N items, the following suffices.

MOVSI P,-/V

HRRI P,BLIST-1

Of course the programmer must define BLIST elsewhere and set aside loca-

tions BLIST to BLIST + N -
\. Using MACRO to full advantage one could

instead give

MOVE P,[IOWD 7V,BLIST]

where the pseudoinstruction

IOWD J,K

is replaced by a word containing -J in the left half and K -
1 in the right.

Elsewhere there would appear

BLIST: BLOCK TV

which defines BLIST as the current contents of the location counter and sets

aside the TV locations beginning at that point.

In the POP- 10 the pushdown list is kept in a random access core mem-

ory, so the restrictions on order of entry and removal of items actually apply

only to the standard addressing by the pointer in pushdown instructions -

other addressing methods can reference any item at any time. The most

convenient way to do this is to use the right half of the pointer as an index

register. To move the last entry to accumulator AC we need simply give

MOVE AC,(P)

Of course this does not shorten the list the word moved remains the last

item in it.

One usually regards an index register as supplying an additive factor for a

basic address contained in an instruction word, but the index register can

supply the basic address and the instruction the additive factor. Thus we can

retrieve the next to last item by giving

MOVE AC,-1(P)

and so forth. Similarly

PUSH P,-3(P)

adds the third to last item to the end of the list;

POP P,-2(P)

removes the last item and inserts it in place of the next to last item in the

shortened list.

2.3 BYTE MANIPULATION 2-15

2.3 BYTE MANIPULATION

This set of five instructions allows the programmer to pack or unpack bytes

of any length anywhere within a word. Movement of a byte is always

between AC and a memory location: a deposit instruction takes a byte from

the right end of AC and inserts it at any desired position in the memory
location; a load instruction takes a byte from any position in the memory
location and places it right-justified in AC.

The byte manipulation instructions have the standard memory reference

format, but the effective address E is used to retrieve a pointer, which is used

in turn to locate the byte or the place that will receive it. The pointer has

the format

p

2-16 CENTRAL PROCESSOR 2.3

Keeping the pointer in fast

memory saves .34 jus. Taking
bytes from a fast memory
location saves another .34 /us.

LDB Load Byte 4.02(4.35) + A5(P + S) [+.26] /us

135

2.4 LOGIC 2-17

the right S bits of AC into the location and position specified by the newly
incremented pointer. The original contents of the bits that receive the byte
are lost, AC and the remaining bits of the deposit location are unaffected.

Note that in the pair of instructions that both increment the pointer and

process a byte, it is the modified pointer that determines the byte location

and position. Hence to unpack bytes from a block of memory, the program
should set up the pointer to point to a byte just before the first desired, and

then load them with a loop containing an ILDB. If the first byte is at the

left end of a word, this is most easily done by initializing the pointer with a

P of 36 (44 8). Incrementing then replaces the 36 with 36 S to point to the

first byte. At any time that the program might inspect the pointer during
execution of a series of ILDBs or IDPBs, it points to the last byte processed

(this may not be true when the pointer is tested from an interrupt routine

[2.13]).

Special Considerations. If S is greater than P and also greater than 36,

incrementing produces a new P equal to lOO-S rather than 36-5. For
S> 36 the byte is at most the entire word; for /> 36 no byte is processed

(loading merely clears AC). If both P and S are less than 36 but P + S > 36,

a byte of size 36 - P is loaded from position P. or the'right 36 - P bits of the

byte are deposited in position P.

2.4 LOGIC

For logical operations the PDF- 10 has instructions for shifting and rotating

as well as for performing the complete set of sixteen Boolean functions of

two variables (including those in which the result depends on only one or

neither variable). The Boolean functions operate bitwise on full words, so

each instruction actually performs thirty-six logical operations simultane-

ously. Thus in the AND function of two words, each bit of the result is the

AND of the corresponding bits of the operands. The table on page 2-23 lists

the bit configurations that result from the various operand configurations for

all instructions.

Each Boolean instruction has four modes that determine the source of the

non-AC operand, if any, and the destination of the result.

Mode

Basic

Immediate

Memory
Both

Suffix

I

M
B

Source of non-
AC operand

The word 0,

E
E

Destination

of result

AC
AC
E

AC and E

Keeping instructions and op-
erands in different memories

saves .47 (.36) p.s in memory
and both modes in the first

four of these instructions

(those that have no operand
or only an AC operand), .20

(.09) /us in memory and both

modes in the remaining
twelve (those that have a

memory or immediate op-

erand).

2-18 CENTRAL PROCESSOR 2.4

A Boolean instruction in

which E addresses a fast

memory location takes .46

(.35) MS less in memory or

both mode if it has no oper-

and or only an AC operand.
If it has a memory operand,
it takes .34 /us less in basic

mode, .54 (.43) MS less in

memory or both mode.

SETZ and SETZI are equiva-
lent (both merely clear AC).
MACRO also recognizes
CLEAR, CLEARI, CLEARM
and CLEARS as equivalent to

the set-to-zeros mnemonics.

For an instruction without an operand (one that merely clears a location or

sets it to all Is) the modes differ only in the destination of the result, so

basic and immediate modes are equivalent. The same is true also of an

instruction that uses only an AC operand. When specified by the mode, the

result goes to the accumulator addressed by A, even when there is no AC
operand.

SETZ Set to Zeros

400

2.4

SETCA

LOGIC

Set to Complement of AC

450

2-20 CENTRAL PROCESSOR 2.4

AND And with AC

404

2.4

ANDCB

LOGIC

And Complements of Both

440

2-22 CENTRAL PROCESSOR 2.4

ORCM Inclusive Or Complement of Memory with AC

464

2.4 LOGIC 2-23

EQV Equivalence with AC

444 M X
67 89 121314 1718 35

Change the contents of the destination specified by M to the complement of

the exclusive OR function of the specified operand and AC (the result has Is

wherever the corresponding bits of the operands are the same).

EQV Equivalence 444 2.35 (2.57) jus

EQVI Equivalence Immediate 445 1.50 (1.61) jus

EQVM Equivalence to Memory 446 2.90 (3.01) /us

EQVB Equivalence to Both 447 2.90 (3.01) jus

The original contents of the destination can be recovered except in EQVB,
where both operands are replaced by the result. In the other three modes
the replaced operand is restored by repeating the instruction in the same

mode, ie by taking the equivalence function of the remaining operand and

the result.

For the four possible bit configurations of the two operands, the above

sixteen instructions produce the following results. In each case the result as

listed is equal to bits 3-6 of the instruction word.

AC
Mode Specified Operand

2-24 CENTRAL PROCESSOR 2.4

Shift and Rotate

The remaining logical instructions shift or rotate right or left the contents of

AC or the contents of two accumulators, A and A + l (mod 208), concat-

enated into a 72-bit register with A on the left. The illustration below
shows the movement of information these instructions produce in the accu-

LSH

2.4 LOGIC

mulators. In a (logical) shift the contents of a register are moved bit-to-bit

with Os brought in at the end being vacated; information shifted out at the

other end is lost. [For a discussion of arithmetic shifting see 2.5J In-

rotation the rnrrtnrb nrp mnvi il i ji Hi .illy 'lui'li thnt intnrmntinn rotated out

in at the other.

The number of places moved is specified by the result of the effective

address calculation taken as a signed number (in twos complement notation)
modulo 28

in magnitude. In other words the effective shift E is the number

composed of bit 18 (which is the sign) and bits 28-35 of the calculation

result. Hence the programmer may specify the shift directly in the instruc-

tion (perhaps indexed) or give an indirect address to be used in calculating

the shift. A positive E produces motion to the left, a negative E to the right;

maximum movement is 255 places.____

2-25

LSH Logical Shift Left:

Right:

2-26 CENTRAL PROCESSOR i2.5

ROTC Rotate Combined Left: 2.00(2.11) + .15||/us

Right: 1.84(1.95)"+ .15|| jus

245

2.5 FIXED POINT ARITHMETIC 2-27

instructions [2.14]) that can request a priority interrupt if enabled. The

conditions detected can only set the flags and the hardware does not clear

them, so the program must clear them before an instruction if they are to

give meaningful information about the instruction afterward. However, the

program can check the flags following a series of instructions to determine

whether the entire series was free of the types of error detected.

All but the shift instructions have four modes that determine the source

of the non-AC operand and the destination of the result.

Mode

Basic

Immediate

Memory
Both

Suffix

I

M
B

Source of non-
AC operand

2-28 CENTRAL PROCESSOR 2.5

Keeping instructions and op-
erands in different memories

saves .20 (.09) MS in SUBM
and SUBB.

When E addresses a fast

memory location, SUB takes

.34 us less than the time

given, SUBM and SUBB take

.54 (.43) /us less.

Keeping instructions and op-
erands in different memories

saves .47 (.36) jus in MULM,
.31 (.20) MS in MULB.

When E addresses a fast

memory location, MUL takes

.34 /us less than the time

given, MULM takes .80 (.69)

MS less, and MULB takes .64

(.53) MS less.

SUB Subtract

SUBI Subtract Immediate

SUBM Subtract to Memory
SUBB Subtract to Both

MUL Multiply

274 2. 53 (2. 75) MS

275 1.68 (1.79) MS

276 3.08 (3. 19) MS

277 3.08 (3. 19) MS

224

2.5 FIXEDu POINT ARITHMETIC 2-29

IMUL Integer Multiply

IMULI Integer Multiply Immediate

IMULM Integer Multiply to Memory
IMULB Integer Multiply to Both

220 9.59 (9.81) jus

221 8.09 (8.20) jus

222 10.56 (10.78) MS

223 10.56 (10.78) /is

Timing. The times given above are average. Refer to the description of

MUL for the timing effects of the multiplication algorithm. Minimum times

with a zero multiplier are

IMUL
IMULI

IMULM
IMULB

8.42 (8.64) MS

7.57 (7.68) MS

9.39 (9.61) MS

9.39 (9.61) MS

These must be increased by .13 MS for each transition. The programmer can

minimize the time by using as the multiplier the operand with fewer transi-

tions.

Keeping instructions and op-
erands in different memories

saves .47 (.36) jus in IMULM
and IMULB.

When E addresses a fast

memory location, IMUL
takes .34 jus less than the time

given, IMULM and IMULB
take .80 (.69) jus less.

DIV Divide

234

2-30 CENTRAL PROCESSOR 2.5

the unrounded quotient in the specified destination. IfM specifies AC as the

destination, place the remainder, with the same sign as the dividend, in

accumulator A + 1 .

Keeping instructions and op-
erands in different memories

saves .5 (.4) /ts in IDIVM, .3

(.2) us in IDIVB.

When E addresses a fast

memory location, IDIV takes

.3 MS less than the time given,

IDIVM takes .8 (.7) MS less,

and IDIVB takes .6 (.5) /is

less.

If the division is not per-

formed, only 3-3.5 /is are

required.

IDIV Integer Divide

I D IV I Integer Divide Immediate

IDIVM Integer Divide to Memory
IDIVB Integer Divide to Both

230 16.5 (16.7) /is

231 15.7 (15. 8) MS

232 17.4 (17.6) MS

233 17.4 (17.6) MS

EXAMPLE. The integer multiply and divide instructions are very useful for

computations on addresses or character codes, or performing any integral

operations in which the result is small enough to be accommodated in a

single register.

As an example suppose we wish to determine the parity of the 8-bit char-

acter abcdefgh, where the letters represent the bits of the character. Assum-

ing the character is right-justified in AC, we first duplicate it twice to the left

producing

abc def gha bed efg hob cde fgh

where the bits (in positions 12-35) are grouped corresponding to the octal

digits in the word. Anding this with

001 001 001 001 001 001 001 001

retains only the least significant bit in each 3-bit set, so we can represent the

result by

cfadgbeh

where each letter represents an octal digit having the same value (0 or 1) as

the bit originally represented by the same letter. Multiplying this by

llllllllg generates the following partial products:

cfadgbeh
cfadgbeh

cfadgbeh
cfadgbeh

cfadgbeh
cfadgbeh

cfadgbeh
cfadgbeh

Since any digit is at most 1
,
there can be no carry out of any column with

fewer than eight digits. Hence the octal digit produced by summing the

center column (the one containing all the bits of the character) is even or

odd as the sum of the bits is even or odd. Thus its least significant bit (bit

14 of the low order word in the product) is the parity of the character, if

even, 1 if odd.

The above may seem a very complicated procedure to do something

trivial, but it is effected by this quite simple sequence (with the character

2.5 FIXED POINT ARITHMETIC 2-31

right-justified in AC) :

IMULI AC, 200401

AND AC.ONES
IMUL AC,ONES

ONES: 11111111

where the parity is indicated by AC bit 14. Of course, following the IMUL
would be a test instruction to check the value of the bit.

Arithmetic Shifting

These two instructions produce an arithmetic shift right or left of the num-
ber in AC or the double length number in accumulators A and A + 1 . Shifting

is the movement of the contents of a register bit-to-bit. The operation dis-

cussed here is similar to logical shifting [see 2.4 and the illustration on

page 2-24] , but in an arithmetic shift only the magnitude part is shifted -

the sign is unaffected. In a double length number the 70-bit string made up
of the magnitude parts of the two words is shifted, but the sign of the low

order word is made equal to the sign of the high order word.

Null bits are brought in at the end being vacated: a left shift brings in Os at

the right, whereas a right shift brings in the equivalent of the sign bit at the

left. In either case, information shifted out at the other end is lost. A single

shift left is equivalent to multiplying the number by 2 (provided no bit of

significance is shifted out); a shift right divides the number by 2.

The number of places shifted is specified by the result of the effective

address calculation taken as a signed number (in twos complement notation)

modulo 28
in magnitude. In other words the effective shift E is the number

composed of bit 18 (which is the sign) and bits 28-35 of the calculation

result. Hence the programmer may specify the shift directly in the instruc-

tion (perhaps indexed) or give an indirect address to be used in calculating

the shift. A positive E produces motion to the left, a negative E to the right;

E is thus the power of 2 by which the number is multiplied. Maximum
movement is 255 places.

ASH Arithmetic Shift Left: 1.62 (1.73) + .\5\E\ MS

Right: 1.46(1.57) + .\5\E\ns

240

2-32 CENTRAL PROCESSOR 2.6

ASHC Arithmetic Shift Combined Left:

Right:

2.6 FLOATING POINT ARITHMETIC 2-33

normalization if the original operands are normalized. An extra quotient bit

is calculated for rounding when requested ; long mode retains the remainder.

The processor has four flags, Overflow, Floating Overflow, Floating

Underflow and No Divide, that indicate when the exponent is too large or

too small to be accommodated or a division cannot be performed because of

the relative values of dividend and divisor. Any of these circumstances sets

Overflow and Floating Overflow. If only these two are set, the exponent of

the answer is too large; if Floating Underflow is also set, the exponent is too

small. No Divide being set means the processor failed to perform a division,

an event that can be produced only by a zero divisor if all nonzero operands
are normalized. These flags can be read and controlled by certain program
control instructions [2.9] , and Overflow and Floating Overflow are avail-

able as processor conditions (via in-out instructions [2.14]) that can

request a priority interrupt if enabled. The conditions detected can only set

the flags and the hardware does not clear them, so the program must clear

them before a floating point instruction if they are to give meaningful infor-

mation about the instruction afterward. However, the program can check

the flags following a series of instructions to determine whether the entire

series was free of the types of error detected.

The floating point hardware functions at its best if given operands that

are either normalized or zero, and except in special situations the hardware

normalizes a nonzero result. An operand with a zero fraction and a nonzero

exponent can give wild answers in additive operations because of extreme

loss of significance; eg adding & X 2
2 and X 269 gives a zero result, as the

first operand (having a smaller exponent) looks smaller to the processor and

is shifted to oblivion. A number with a 1 in bit and Os in bits 9-35 is not

simply an incorrect representation of zero, but rather an unnormalized

"fraction" with value -
1 . This unnormalized number can produce an incor-

rect answer in any operation. Use of other unnormalized operands simply
causes loss of significant bits, except in division where they can prevent its

execution because they can satisfy a no-divide condition that is impossible
for normalized numbers.

The processor normalizes the

result by shifting the fraction

and adjusting the exponent to

compensate for the change in

value. Each shift and accom-

panying exponent adjustment
thus multiply the number
both by 2 and by

l
h. simulta-

neously, leaving its value un-

changed.

Scaling

One floating point instruction is in a category by itself: it changes the

exponent of a number without changing the significance of the fraction. In

other words it multiplies the number by a power of 2, and is thus analogous
to arithmetic shifting of fixed point numbers except that no information is

lost, although the exponent can overflow or underflow. The amount added

to the exponent is specified by the result of the effective address calculation

taken as a signed number (in twos complement notation) modulo 2 8
in mag-

nitude. In other words the effective scale factor E is the number composed
of bit 18 (which is the sign) and bits 28-35 of the calculation result. Hence
the programmer may specify the factor directly in the instruction (perhaps

indexed) or give an indirect address to be used in calculating it. A positive E
increases the exponent, a negative E decreases it; E is thus the power of 2 by
which the number is multiplied. The scale factor lies in the range -256 to

+255.

2-34 CENTRAL PROCESSOR 2.6

TV is the number of left shifts

needed to normalize the

result.

This instruction can be used

to float a fixed number with

27 or fewer significant bits.

To float an integer contained

within AC bits 9-35,

FSC AC, 233

inserts the correct exponent
to move the binary point
from the right end to the left

of bit 9 and then normalizes

(233 8
=

155,o
= 128 + 27).

FSC Floating Scale 2.75(2.86)4- .257V jus

132

2.6 FLOATING POINT ARITHMETIC 2-35

tion and rounding is tested for overflow or underflow. If the exponent is

> 127, set Overflow and Floating Overflow; the result stored has an expo-
nent 256 less than the correct one. If <-128, set Overflow, Floating Over-

flow and Floating Underflow; the result stored has an exponent 256 greater

than the correct one.

FADR Floating Add and Round

144

2-36

Use of normalized operands

requires at most one normali-

zation step, for the result. If

unnormalized operands are

used, all times must be in-

creased by .25./V.

FMPR

CENTRAL PROCESSOR

Floating Multiply and Round

2.6

1 64

2.6 FLOATING POINT ARITHMETIC 2-37

exponent overflow or underflow as described above, and place the result in

the specified destination.

FDVR Floating Divide and Round

FDVRI Floating Divide and Round Immediate

FDVRM Floating Divide and Round to Memory

FDVRB Floating Divide and Round to Both

174

14.1 (14.3) jus

175

13.3 (13.4) jus

176

15.1 (15.3) MS

177

15.1 (15.3) MS

If unnormalized operands are

used, all times must be in-

creased by .257V. If the divi-

sion is not performed, only
3.5-4 /us are required.

Operations without Rounding

Instructions that do not round are faster for processing floating point num-
bers with fractions containing fewer than 27 significant bits. On the other

hand the long mode provides double precision or allows the programmer to

use his own method of rounding. Besides the four usual arithmetic opera-
tions with normalization, there are two nonnormalizing instructions that

facilitate double precision arithmetic [2.1 1 gives examples of double preci-

sion floating point routines] . These two instructions have no modes.

DFN Double Floating Negate 3.43 (3.54) MS

131
|

A

2-38

The exponent of the sum is

equal to that of the larger

summand unless addition of

the fractions overflows, in

which case it is greater by 1.

Exponent overflow can occur

only in the latter case.

CENTRAL PROCESSOR 2.6

NOTE

The result is placed in accumulator A+l . This is

the only arithmetic instruction that stores the

result in a second accumulator, leaving the original

operands intact.

If the exponent of the sum following the one-step normalization is > 127,

set Overflow and Floating Overflow; the result stored has an exponent 256

less than the correct one.

Keeping instructions and op-
erands in different memories

saves .47 (.36) /us in memory
and both modes.

When E addresses a fast

memory location, a floating

point instruction without

rounding takes .34 MS less

than the time listed in basic

or long mode, .80 (.69) /us

less in memory or both mode.

The remaining floating point instructions perform the four standard arith-

metic operations with normalization but without rounding. All use AC and

the contents of location E as operands and have four modes.

Mode

Basic

Long

Suffix

L

Effect

High order word of result stored in AC.

In addition, subtraction and multiplica-

tion, the two-word result (in th^d^ouble
length format described inB I is

stored in accumulators A ancft^^^n
division the dividend is the double leneth

Memory M High order word of result store/d in E.

Both B 'High order word of result stored in AC
and E. ^ifc

ltw^cT
vs*< a. .

-^UMbw 'rewas&fa v
In each of these instructions, the exponent that results, from normaliza-

tion is tested for overflow or underflow. If the exponent is\Z> 127, set Over-

flow and Floating Overflow; the result stored has an exponent 256 less than

the correct one. If < -128, set Overflow, Floating Overflow and Floating

Underflow; the result stored has an exponent 256 greater than the correct

one.

The time required is a function of the number N of left shifts needed for

normalization.

FAD Floating Add

140

2.6 FLOATING POINT ARITHMETIC 2-39

mulators in long mode. Otherwise normalize the double length sum bringing
Os into bit positions vacated at the right, test for exponent overflow or

underflow as described above, and place the high order word of the result in

the specified destination.

In long mode if the exponent of the sum is > 1 54 (1 27 + 27) or < -
1 1

(-128 + 27) or the low order half of the fraction is zero, clear AC A+ \.

Otherwise place a low order word for a double length result in A + l by
putting a in bit 0, an exponent in positive form 27 less than the exponent
of the sum in bits 1 -8, and the low order part of the fraction in bits 9-35.

FAD Floating Add

FAD L Floating Add Long

FADM Floating Add to Memory

FADB Floating Add to Both

140

4.46 (4.68) + .15D + .257V jus

141

5.3 1 (5.53) + .15D + . 257V /us

142

5.43 (5.65) + .15D + .25N (is

143

5.43(5.65) + .15> + .25N us

D is the difference between

the operand exponents pro-
vided that difference is < 63.

Otherwise D = 0.

FSB Floating Subtract

150

2-40 CENTRAL PROCESSOR 2.6

FMP

Use of normalized operands

requires at most one normali-

zation step for the result. If

unnormalized operands are

used, all times must be in-

creased by .25N.

Floating Multiply

1 60

2.7 ARITHMETIC TESTING 2-41

is zero, clear the destination specified by M, clearing both accumulators in

long mode if the double length dividend was zero. A quotient with a non-

zero fraction will already be normalized if the original operands were nor-

malized; if it is not, normalize it bringing Os into bit positions vacated at the

right. Test for exponent overflow or underflow as described above, and

place the single length quotient part of the result in the specified destination.

In long mode calculate the exponent for the fractional remainder from the

division according to the relative magnitudes of the fractions in dividend and

divisor: if the dividend was greater than or equal to the divisor, the exponent
of the remainder is 26 less than that of the dividend, otherwise it is 27 less.

If the remainder exponent is > 1 27 or < -
1 28 or the fraction is zero, clear

AC A + 1 . Otherwise place the floating point remainder (exponent and frac-

tion) with the sign of the dividend in AC A + 1 .

FDV Floating Divide

FDVL Floating Divide Long

FDVM Floating Divide to Memory
FDVB Floating Divide to Both

170

171

172

173

14.1 (14.3) MS

15.6 (15.8) MS

15.1 (15.3) MS

15.1 (15.3) MS

In long mode a nonzero un-

normalized dividend whose

entire high order fraction is

zero produces a zero quo-
tient. In this case the second

AC receives rubbish.

If unnormalized operands are

used, all times must be in-

creased by .25N. If the divi-

sion is not performed, only
4-4.5 /is are required.

2.7 ARITHMETIC TESTING

These instructions may jump or skip depending on the result of an arithmetic

test and may first perform an arithmetic operation on the test word. Two of

the instructions have no modes.

AOBJP Add One to Both Halves of AC and Jump if Positive 1.68 (1.79) MS

252

2-42 CENTRAL PROCESSOR 2.7

The incrementing of both halves of AC simultaneously is effected by adding
1 000001 8 . A count of -2 in AC left is therefore increased to zero if 2 18 -

1

is incremented in AC right.

These two instructions allow the program to keep a control count in the

left half of an index register and require only one data transfer to initialize.

Problem: Add 3 to each location in a table of TV entries starting at TAB.

Only four instructions are required.

MOVSI XR -N ;Put -TV in XR left (clear XR right)

MOVEI AC, 3 ;Put3inAC
ADDM AC,TAB(XR) ;Add 3 to entry

AOBJN XR,.-1 ;Update XR and go back unless all

;entries accounted for

The eight remaining instructions jump or skip if the operand or operands

satisfy a test condition specified by the mode.

Mode Suffix

Never

Less L

Equal E

Less or Equal LE

Always A
Greater or Equal GE
Not Equal N
Greater G

Instructions with one operand compare AC or the contents of location E
with zero, those with two compare AC with E or the contents of location E.

The processor always makes the comparison even though the result is used in

only six of the modes. If the mnemonic has no suffix there is never any

program control function, and the instruction may be a no-op; an A suffix

produces an unconditional jump or skip the action is always taken regard-

less of how the two quantities compare.

CAI Compare AC Immediate and Skip if Condition 1 .68 (1 .79) /us

Satisfied

30

2.7 ARITHMETIC TESTING 2-43

CAI

2-44 CENTRAL PROCESSOR 2.7

JUMPLE Jump if AC Less than or Equal to Zero

JUMPA Jump Always

JUMPGE Jump if AC Greater than or Equal to Zero

JUMPN Jump if AC Not Equal to Zero

JUMPG Jump if AC Greater than Zero

323

324

325

326

327

When E addresses a fast mem-

ory location, this instruction

takes .34 /us less than the time

given.

If A is zero, SKIP is a no-op;
otherwise it is equivalent to

MOVE. (Instruction code 330
has mnemonic SKIP for sym-

metry.)

SKIPA is a convenient way to

load an accumulator and skip

over an instruction upon en-

tering a loop.

SKIP Skip if Memory Condition Satisfied 2.39 (2.61)

33

2.7 ARITHMETIC TESTING 2-45

AOS Add One to Memory and Skip if Condition Satisfied 2.94 (3.05) jus

35

2-46

Keeping the count in fast

memory saves .54 (.43) us;

keeping it in a different mem-

ory from the instruction saves

.20 (.09) MS.

CENTRAL PROCESSOR

SOS Subtract One from Memory and Skip if Condition

Satisfied

2.7

2.94 (3.05) MS

37

2.8 LOGICAL TESTING AND MODIFICATION

2.8 LOGICAL TESTING AND MODIFICATION

2-47

These eight instructions use a mask to modify and/or test selected bits in

AC. The bits are those that correspond to Is in the mask and they are

referred to as the "masked bits". The programmer chooses the mask, the

way in which the masked bits are to be modified, and the condition the

masked bits must satisfy to produce a skip.

The basic mnemonics are three letters beginning with T. The second letter

selects the mask and the manner in which it is used.

Mask

Right

Left

Direct

Swapped

Letter

R

L

D

S

Effect

AC right is masked by E (AC is masked

by the word 0,E)

AC left is masked by E (AC is masked by
the word ,0)

AC is masked by the contents of loca-

tion E

AC is masked by the contents of loca-

tion E with left and right halves inter-

changed

The third letter determines the way in which those bits selected by the mask

are modified.

Modification

No

Zeros

Complement

Ones

Letter

N
Z

C

o

Effect on AC

None

Places Os in all masked bit positions

Complements all masked bits

Places Is in all masked bit positions

An additional letter may be appended to indicate the mode, which spec-

ifies the condition the masked bits must satisfy to produce a skip.

Mode

Never

Equal

Always

Not Equal

Suffix

E

A
N

Effect

Never skip

Skip if all masked bits equal

Always skip

Skip if not all masked bits equal

(at least one bit is 1)

If the mnemonic has no suffix there is never any skip, and the instruction is

a no-op if there is also no modification; an A suffix produces an uncondi-

tional skip the skip always occurs regardless of the state of the masked

bits. Note that the skip condition must be satisfied by the state of the

masked bits prior to any modification called for by the instruction.

If a direct or swapped mask is

taken from a fast memory
location, a test instruction

takes .34 ;us less than the

time listed.

These mode names are con-

sistent with those for arith-

metic testing and derive from

the test method, which ands

AC with the mask and tests

whether the result is equal to

zero or is not equal to zero.

The programmer may find it

convenient to think of the

modes as Every and Not

Every: every masked bit is

or not every masked bit is 0.

2-48

TRN is a no-op.

CENTRAL PROCESSOR

TRN Test Right, No Modification, and Skip if Condition

Satisfied

2.8

1.85 (1.96) jus

60

2.8 LOGICAL TESTING AND MODIFICATION 2-49

TRO Test Right, Ones, and Skip if Condition Satisfied 1.85 (1.96) jus

66

2-50 CENTRAL PROCESSOR 2
,

-

TLC Test Left, Complement, and Skip if Condition

Satisfied

1.85 (1.96) jus

64

2.8 LOGICAL TESTING AND MODIFICATION 2-51

TDZ Test Direct, Zeros, and Skip if Condition Satisfied 2.70 (2.92) MS

63

2-52

TSN is a no-op that refer-

ences memory.

CENTRAL PROCESSOR

TSN Test Swapped, No Modification, and Skip if

Condition Satisfied

2.8

2.70 (2.92) MS

61

2.8 LOGICAL TESTING AND MODIFICATION 2-53

TSCA Test Swapped, Complement, but Always Skip

TSCN Test Swapped, Complement, and Skip if Not
All Masked Bits Equaled

655

657

ISO Test Swapped, Ones, and Skip if Condition Satisfied 2.70 (2.92)

67

2-54 CENTRAL PROCESSOR 2.9

TRC F,X + Y ;Complement flags X and Y
TRCE F,X+Y ;Test both and restore original states

;Do this if not both on

;Skip to here if both on

2.9 PROGRAM CONTROL

As no-ops, code 247 takes

1.50 (1.61) MS, 257 takes

1.36 (1.47) MS.

Note that nothing is stored in

bits 13-17, so when the PC
word is addressed indirectly it

can produce neither indexing
nor further indirect address-

ing.

The program control class of instructions includes the unimplemented user

operations [discussed in the next section] and the arithmetic and logical test

instructions. Some instructions in this class are no-ops, as are a few of the

instructions for performing logical operations. The most commonly used

no-op is JFCL, which is discussed below. No-ops among the instructions

previously discussed are SETA, SETAI, SETMM, CAI, CAM, JUMP, TRN,
TLN, TON, TSN. Of these, SETA, SETAI, CAI, JUMP, TRN and TLN do

not use the calculated effective address to reference memory. Hence in these

instructions one can store any information in bits 18-35 without fear of

attempting to address a location outside a user block or in a memory that

does not exist. The unassigned instruction codes 247 and 257 are used for

instructions installed specially for a particular system. They execute as

no-ops when run on a computer that contains no special hardware for them,

but for program compatibility it is advised that they not be used regularly as

no-ops.

The present section treats all program control instructions other than

those mentioned above and in-out instructions that test input conditions

[2.12] . All but one of these are jumps, although the exception causes the

processor to execute an instruction at an arbitrary location and may there-

fore be regarded as a jump with an immediate and automatic return. Also,

all but two of the jumps are unconditional; one exception tests various flags,

the other tests an accumulator.

Several of the jump instructions save the current contents of the program

counter PC in the right half of an accumulator or memory location and save

the states of various flags in the left half. The left bit positions that receive

information are listed below; all other left bit positions are cleared. An X in

a mnemonic indicates any letter (or none) that may appear in the given

position to specify the mode, eg ADDA' comprises ADD, ADDI, ADDM,
ADDB.

Bit Meaning ofa 1 in the Bit

Overflow any of the following has occurred:

A single instruction has set one of the carry flags (bits 1 and 2)

without setting the other.

An ASH or ASHC has left shifted a 1 out of bit 1 in a positive

number or a out in a negative number.

An MULJf has multiplied -2
35
by itself (product 270).

An IMULJf has multiplied two numbers with product

<-2 35
.

3S or

2.9 PROGRAM CONTROL 2-55

Floating Overflow has been set (bit 3).

No Divide has been set (bit 1 2).

Carry if set without Carry 1 (bit 2) being set, causes Overflow to

be set and indicates that one of the following has occurred:

An ADDA' has added two negative numbers with sum < -23S
.

An SUBA' has subtracted a positive number from a negative num-
ber with difference < -2 3S

.

An SO3X or SOSX has decremented -2 3S
.

An MOVNAf or MOVMJT has negated -2
35

.

But if set with Cany 1, indicates that one of these nonoverflow

events has occurred:

In an ADDA' both summands were negative, or their signs differed

and their magnitudes were equal or the positive one was the

greater in magnitude.

In an SUBA' the signs of the operands were the same and AC was

the greater or the two were equal, or the signs of the operands
differed and AC was negative.

An AOJA' or AOSA" has incremented - 1 .

An SOW or SOSAf has decremented a nonzero number other than
_ 2 35

An MOVNAf has negated zero.

Carry 1 if set without Carry (bit 1) being set, causes Overflow to

be set and indicates that one of the following has occurred:

An ADDA' has added two positive numbers with sum > 2 35
.

An SUBAf has subtracted a negative number from a positive num-
ber with difference > 2 3S

.

An AOJA' or AOSA' has incremented 2 35 -
1 .

But if set with Carry 0, indicates that one of the nonoverflow events

listed under Carry has occurred.

Floating Overflow - any of the following has set Overflow:

In a floating point instruction other than DFN, the exponent of

the result was > 127.

Floating Underflow (bit 1 1) has been set.

No Divide (bit 12) has been set in an FDVAf or FDVRA'.

Byte Interrupt the processor is in a priority interrupt that inter-

rupted a byte instruction after the processing of the pointer but

before the processing of the byte. Hence if an ILDB or IDPB was

interrupted, the pointer now points not to the last byte, but rather

to the byte that should be handled upon the return to the inter-

rupted program [2.13].

User the processor is in user mode [2.15] .

Remember [2.5], overflow

is determined directly from

the carries, not from the

flags. The carry flags give

meaningful information only
if no more than one instruc-

tion that can set them occurs

between clearing and reading
them.

2-56 CENTRAL PROCESSOR 2.9

If normalized operands are

used, only a zero divisor can

cause floating division to fail.

6 User In-out even if the processor is in user mode, the restrictions

on user instructions do not apply [2.15].

11 Floating Underflow -- in a floating point instruction other than

DFN, the exponent of the result was < -128 and Overflow and

Floating Overflow have been set.

12 No Divide any of the following has set Overflow:

In a DIVX the dividend was greater than or equal to the divisor.

In an IDIVX the divisor was zero.

In an FDVT or FDVRA' the divisor was zero, or the dividend

fraction was greater than or equal to twice the divisor fraction in

magnitude; in either case Floating Overflow has been set.

FLOATING BYTE FLOATING

2.9 PROGRAM CONTROL 2-57

from location E and continue sequential operation from there.

In either case AC is unaffected, the original contents of AC ^4 + 1 are lost.

Note that when AC is nega-

tive, the second accumulator

is cleared, just as it would be

if AC were zero.

JFCL Jump on Flag and Clear 1.36 (1.47) jus

255

2-58 CENTRAL PROCESSOR 2.9

JSP Jump and Save PC 1.36 (1.47) /us

265

2.9 PROGRAM CONTROL 2-59

12

indirect addressing.

Restoration of all but the user flags is directly according to the

contents of the corresponding bits as given above: a flag is set by a 1

in the bit, cleared by a 0. A 1 in bit 5 sets User but a has no effect,

so the Monitor can restart a user program by restoring flags but the

user cannot leave user mode by this method. A in bit 6 clears User

In-out, but a 1 sets it only if the JRST is being executed by the

Monitor, ie if User is clear.

Enter user mode. The user program starts at relocated location E.

To produce one or a combination of these functions the programmer can

specify the equivalent of an AC address that places Is in the appropriate bits,

but MACRO recognizes mnemonics for the most important 13-bit instruction

codes (bits 0-1 2).

JRST

HALT
JRSTF

JEN

JRST 0,

JRST 10,

JRST 4,

JRST 2,

JRST 1,

JRST 12,

Jump

Jump and Restore

Interrupt Channel

Halt

Jump and Restore Flags

Jump to User Program

Jump and Enable

25400

25440

25420

25410

25404

25450

In a JRSTF or JEN the flags are restored from bits 0- 1 2 of the final word

retrieved in the effective address calculation; hence any JRST with a 1 in bit

11 must use indirect addressing or indexing, which takes extra time. If the

PC word was stored in AC (as in a JSP), a common procedure is to use AC to

index a zero address (eg, JRSTF (AC)), so its right half becomes the effec-

tive Gump) address. If the PC word was stored in core (as in -a JSR), one

must address it indirectly (remember, bits 13-17 of the PC word are clear,

so again its right half is the effective address). A JRSTF (AC) takes 1.64

(1.75) jus, a JRSTF PCWORD takes 2.34 (2.56) MS.

CAUTION

Giving a JRSTF or JEN without indexing or

indirect addressing restores the flags from the

instruction code itself.

If this instruction is executed as a result of a priority interrupt or in

unrelocated 41 or 61 while the processor is in user mode, bit 5 of the PC_

word stored is 1 and the processor leaves user mode.

JFCL is the only jump that can test any of the flags directly. In fact it is

the only basic program control instruction that can do so several of the

flags can be tested as processor conditions by in-out instructions, but these

are ordinarily illegal in user programs anyway. But JFCL can test only four

By manipulating the contents

of the left half word used to

restore the flags, the program-
mer can set them up in any
desired way except that a

user program cannot clear

User or set User In-out.
jet-

ting Byte Interrupt prevem^
incrementing in the next

ILDB or IDPB provided there,

is no intervening JSR. JSP or

PUSHJ.

JEN completes an interrupt

by restoring the channel and

restoring the flags for the

interrupted program.

2-60 CENTRAL PROCESSOR 2.9

of the flags, and it saves no information for a subsequent return from a sub-

routine. Hence it serves as a branch point for entry into either one of two

main paths, which may or may not have a later point in common. Eg, it may
test the carry flags simply to take appropriate action in a double precision

fixed point routine.

JSR and JSP are regularly used to call subroutines. They are uncondi-

tional, but the execution of such an instruction can be the result of a

decision made by any conditional skip or jump. In the case of the flags, a

basic overflow test and subroutine call can be made as follows.

JOV .+2

The fastest skip is CAIA. JRST . +2
;
Faster than skipping

JSR OVRFLO
;Jump over this if Overflow clear

If we wish to go to the DIVERR routine when No Divide is set, we must first

read the flags into a test accumulator T and then use a test instruction.

JSP T, . + 1 ;Store flags but continue in sequence
TLNE T,40 ;40 left selects bit 1 2

JSR DIVERR ;Skip this if No Divide clear

A subroutine called by a JSR must have its entry point reserved for the PC
word. Hence it is nonreentrant: the JSR modifies memory so the subroutine

cannot be shared with other programs. The JSP requires an accumulator,

but it is faster and is convenient for argument passing. To return from a

JSR-called subroutine one usually addresses the PC word indirectly, return-

ing to the location following the JSR. But there are two ways to get back

from a JSP. We can address the PC word indirectly with a JRST @AC (or

JRSTF @AC if the flags must be restored), but we can also get it by

addressing AC as an index register: JRST (AC). By using the second return

method we can place N words of data for the subroutine immediately after

the call, and return to the location following the data by giving a

JRST 7V(AC).

Suppose we wish to call a print subroutine and supply the words from

which the characters are to be taken. Our main program would contain the

following:

JSP T,PRINT ;Put PC word in accumulator T

;Text inserted here by ASCIZ pseudo-

i instruction, which automatically

;places a zero (null) character at the

;end

;Next instruction here

The subroutine can use T as a byte pointer which already addresses the first

word of data. For the print routine, characters are loaded into another

accumulator CH.

2.9

PRINT: HRLI
ILDB
JUMPE

T,440700

CH,T
CH,1(T)

JRST PRINT+1

PROGRAM CONTROL

Initialize left half of pointer

;Increment pointer and load byte

;Upon reaching zero character return

;to one beyond last data word

;Print routine

;Get next character

2-61

JSA Jump and Save AC 2.82 (2.93) jus

266

2-62 CENTRAL PROCESSOR 2.9

SI:

JSA

JSA

17, SI

17,82

S2:

JRA 17, (17)

;Main program

;Call to first subroutine (A)

;First subroutine starts here

;Call to second subroutine (B)

; Return to A + 1 in main program

;Second subroutine starts here

JSA

S3:

.7,83 ;Call to third subroutine (C)

JRA 17, (17) ;Return to B + 1 in first subroutine

;Third subroutine starts here

JRA ;Return to C+ 1 in second subroutine

To call the next deeper subroutine at any level, a JSA places E and PC in the

left and right of AC 17, saves the previous contents of AC 17 in (the first

subroutine location), and jumps to E + 1 . To return to the next higher level,

a JRA restores the previous contents of AC 17 from the location addressed

by AC 17 left (the first subroutine location) and jumps to the location

addressed by AC 17 right (the location following the JSA in the higher sub-

routine). If N lines of data for the next subroutine follow a JSA, the return

to the location following the data is made by giving a JRA 17,Af(17).

Keeping instructions and the

pushdown list in different

memories saves .47 (.36) /us.

PUSHJ Push Down and Jump 3.00 (3. 11)

260

2.9

POPJ

PROGRAM CONTROL

Pop Up and Jump 2.96 (3. 18)

263

2-64

An unimplemented user oper-
ation is usually referred to as

a UUO, but this mnemonic
means nothing to the assem-

bler. UUOs are also some-

times called "programmed
operators".

CENTRAL PROCESSOR

2.10 UNIMPLEMENTED OPERATIONS

2.10

Many of the codes not assigned as specific instructions are executed as

unimplemented user operations, wherein the word given as an instruction is

trapped and must be interpreted by a routine included for this purpose by
the programmer. In time sharing, however, half of the codes are set aside for

user communication with the Monitor and are interpreted by it. Instructions

that are illegal in user mode also trap in this manner.

The total time required is

that listed plus the time for

the instruction in location 41.

Interleaving memories and

1 saves .47 (.36) /LIS.

Unimplemented User Operation 2.33 (2.44)

000-077

2.11 PROGRAMMING EXAMPLES 2-65

2.11 PROGRAMMING EXAMPLES

Before continuing to input-output and related subjects, let us consider som

simple programs that demonstrate the use of a variety of the instruction

described thus far.

Suppose we wish to count the number of Is in a word. We could of

course check every bit in the word. But there is a quicker way if we remem-
ber that in any word and its twos complement the rightmost 1 is in the same

position, both words are all Os to the right of this 1, and no corresponding
bits are the same to the left (the parts of both words at the left of the right-

most 1 are complements). Hence using the negative of a word as a mask for

the word in a test instruction selects only the rightmost 1 for modification.

The example uses three accumulators: the word being tested (which is lost)

is in T, the count is kept in CNT, and the mask created in each step is stored

in TEMP.

MOVEI CNT,0 ;ClearCNT
MOVN TEMP,T ;Make mask to select rightmost 1

TDZE T,TEMP ;Clear rightmost 1 in T
AOJA CNT,. -2 ;Increase count and jump back

;Skip to here if no Is left in T

CNT is increased by one every time a 1 is deleted from T. After all Is have

been removed, the TDZE skips.

In the standard algorithm for converting a number TV to its equivalent in

base b, one performs the series of divisions

N/b qi + rjb r
l
< b

q\lb q 2 + r2 /b r2 < b

Qi/b =
q 3 + r 3 /b r 3 < b

qn -i/b
= Q + rn /b rn <b

The number in base b is then rn . . . r3 r 2 r, . Eg the octal equivalent of 61

decimal is 75:

61/8 = 7 + 5/8

7/8 = + 7/8

The following decimal print routine converts a 36-bit positive integer in

accumulator T to decimal and types it out. The contents of T and T+ 1 are

destroyed. The routine is called by a PUSHJ P, DECPNT where P is the

pushdown pointer.

DECPNT: IDIVI T,12 ;12 8 =10,
PUSH P,T+1 ;Save remainder

SKIPE T ;A11 digits formed?

PUSHJ P,DECPNT ;No, compute next one

2-66 CENTRAL PROCESSOR 2.11

DECPN1: POP P,T ;Yes, take out in opposite order

ADDI T, 60 ;Convert to ASCII (60 is code for 0)

JRST TTYOUT ;Type out

This routine repeats the division until it produces a zero quotient. Hence it

suppresses leading zeros, but since it is executed at least once it outputs one

"0" if the number is zero. The TTYOUT routine returns with a POPJ P, to

DECPN1 until all digits are typed, then to the calling program.

Space can be saved in the pushdown stack by storing the computed digits

in the left halves of the locations that contain the jump addresses. This is

accomplished in the decimal print routine by making the following substi-

tutions.

PUSH P,T+1 -> HRLM T+1,(P)

POP P,T -> HLRZ T,(P)

The routine can handle a 36-bit unsigned integer if the IDIVI T, 12 is

replaced by

MACRO interprets a number LSHC T,~tD35 ;Shift right 35 bits into T+l
following tD as decimal. LSH T+1,-1 ;Vacate the T+ 1 sign bit

DIVI T, 12
;Divide double length integer by 10

Many data processing situations involve searching for information in tables

and lists of all kinds. Suppose we wish to find a particular item in a table

beginning at location TAB and containing N items. Accumulator T contains

the item. The right half of A is used to index through the table, while the

left half keeps a control count to signal when a search is unsuccessful.

MOVSI A,-N ;Put -N, in A
CAMN T,TAB(A) ;Skip if current item not the one

JRST FOUND ;Item found

AOBJN A, .-2 ;Try next item until left count =

;Item not in list

The location of the item (if found) is indicated by the number in the right

half of A (its address is that quantity plus TAB). A slightly different pro-

cedure would be

HRLZI A..-N
CAME T,TAB(A) ;Skip if current item is the one

AOBJN A, .

-
1

JUMPL A, FOUND ;Jump if left count <
. . . ;Item not found

Locations used for a list can be scattered throughout memory if data is

kept in the left half of each location and the right half addresses the next

location in the list. The final location is indicated by a zero right half. The

following routine finds the last half word item in the list. It is entered at

FIND with the first location in the list addressed by the right half of

accumulator T. At the end the final item is in T right.

2.11 PROGRAMMING EXAMPLES 2-67

MOVE T,(T)

FIND: TRNE 1,111111
JRST .-2

HLRZS T

;Move next item to T
; Skip if AC right

=

;Move final item to right

The following counts the length of the list in accumulator CNT.

MOVEI CNT,0 ;ClearCNT
JUMPE T,OUT ;Jump out if T contains

HRRZ T,(T) ;Get next address

AOJA CNT,. -2 ;Count and go back

I

A
rVt?

-A

AH Ad

Double Precision Floating Point. The following are straightforward rou-

tines for handling double precision floating point arithmetic [2.6 describes

the floating point instructions] .

DFAD:

DFSB:

DFMP:

UFA

2-68 CENTRAL PROCESSOR 12.12

DFDV: FDVL

2.12

COM

INPUT-OUTPUT

Conditions In 4.87 (4.98) jus

7

2-70

CONSO

CENTRAL PROCESSOR

Conditions In and Skip if One

2.12

4.11 (4.22) jus

7

2.12 INPUT-OUTPUT 2-71

exhaust the types of information transfer that occur in the IO system, at

least three of which are applicable to any given device. Thus all instruction

descriptions in the rest of this manual will be of the CONO, CONI, DATAO
and DATAI instructions combined with the various device codes. The dis-

cussion of each device will present timing information pertinent to device

operation, but no instruction times will be included as they are identical to

those given above.

Every device requires initial conditions; these are sent by a CONO, which

can supply up to eighteen bits of control information to the device control

register. The program can determine the status of the device from up to

thirty-six bits of input conditions that can be read by a CONI (but only the

right eighteen can be tested by a CONSZ or CONSO). Some input bits

simply reflect initial conditions sent by a previous CONO ; others are set up

by output conditions but are subject to subsequent adjustment by the

device; and still others, such as status levels from a tape transport, have no

direct connection with output conditions.

Data is moved in and out in characters of various sizes or in full 36-bit

words. Each transfer between memory and a device data buffer requires a

single DATAI or DATAO. Every device has a CONO and CONI, but it may
have only one data instruction unless it is capable of both input and output.

Eg, the paper tape reader has only a DATAI, the tape punch has only a

DATAO, but the teletype has both. (A high speed device, such as a disc file,

can be connected to the DF10 Data Channel, which in turn is connected

I

directly to memory by a separate memory bus and handles data auto-

matically. This eliminates the need for the program to give a DATAO or

DATAI for each transfer.)

A Typical IO Device. Every device has a 7-bit device selection network, a

priority interrupt assignment, and at least two flags, Busy and Done, or some

equivalent. The selection network decodes bits 3-9 of the instruction so

that only the addressed device responds to signals sent by the processor over

the in-out bus. To use the device with the priority interrupt, the program

must assign a channel to it. Then whenever an appropriate event occurs in

the device, it requests an interrupt on the assigned channel.

The Busy and Done flags together denote the basic state of the device.

When both are clear the device is idle. To place the device in operation, a

CONO or DATAO sets Busy. If the device will be used for output, the pro-

gram must give a DATAO that sends the first unit of data - a word or char-

acter depending on how the device handles information. When the device has

processed a unit of data, it clears Busy and sets Done to indicate that it is

ready to receive new data for output, or that it has data ready for input.

In the former case the program would respond with a DATAO to send more

data; in the latter, with a DATAI to bring in the data that is ready. If an

interrupt channel has been assigned to the device, the setting of Done signals

the program by requesting an interrupt; otherwise the program must keep

testing Done to determine when the device is ready.

All devices function basically as described above even though the number

of initial conditions varies considerably. Besides Busy and Done flags, the

tape reader and punch have a Binary flag that determines the mode of

operation of the device with respect to the data it processes
- alphanumeric

The word "input" used with-

out qualification always refers

to the transfer of data from

the peripheral equipment into

the processor; "output" refers

to the transfer in the opposite

direction.

A DATAI that addresses an

output-only device simply
clears location E. DATAI PI,

(code 70044) produces only

this effect as the priority in-

terrupt has no data for input.

On the other hand a DATAO
that addresses an input-only

device is a no-op.
When the device code is

undefined or the addressed

device is not in the system,

a DATAO, CONO or CONSO
is a no-op, a CONSZ is an

absolute skip, a DATAI or

CONI clears location E.

Busy and Done both set is a

meaningless situation.

2-72 CENTRAL PROCESSOR 2.1

Occasionally a device with a

second code may use a

DATAI or DATAO to trans-

mit additional control or

maintenance information.

or binary. The teletype has no binary flag, but it has two Busy flags and two
Done flags

- one pair for input, another for output. A complicated device,

such as magnetic tape, may require two device codes to handle the large

number of conditions associated with it. Initial conditions for a tape system
include a transport address and an actual command the tape control is to

perform; input conditions include error flags and transport status levels.

Most IO devices involve motion of some sort, usually mechanical (in a

display only the electron beam moves). With respect to mechanical motion

there are two types of devices, those that stay in motion and those that do

not. Magnetic tape is an example of the former type. Here the device

executes a command (such as read, write, space forward) and the done flag

indicates when the entire operation is finished. A separate data flag signals

each time the device is ready for the program to give a DATAI or DATAO,
but the tape keeps moving until an entire record or file has been processed.

Paper tape, on the other hand, stops after each transfer, but the program
need not give a new CONO every time. The reader logic is set up so that a

DATAI not only reads the data, but also clears Done and sets Busy. Hence

if the instruction is given within a critical time, the tape moves continuously
and only two CONOs are required for a whole series of transfers: one to start

the tape, and one to stop it after the final DATAI.
Other devices operate in one or the other of these two ways but differ in

various respects. The tape punch and teletype output are like the reader.

Teletype input is initiated by the operator striking a key rather than by the

program. The card reader reads an entire card on a single CONO, with a

DATAI required for each column. The DECtape stays in motion, and the

program must give a CONO to stop it or it will go all the way to the end

zone.

Readin Mode

This mode of processor operation provides a means of placing information

in memory without relying on a program already in memory or loading one

word at a time manually. Its principal use is to read in a short loader

program which is then used for loading other information. A loader program
should ordinarily be used rather than readin mode, as a loader can check the

validity of the information read.

Pressing the readin key on the console activates readin mode by starting

the processor in a special hardware sequence that simulates a DATAI fol-

lowed by a series of BLKI instructions, all of which address the device whose

code is selected by the readin device switches on the small panel at the left

of the paper tape reader. Various devices can be used, and for each there

are special rules that must be followed. But the readin mode characteristics

of any particular device are treated in the discussion of the device. Here we

are concerned only with the general characteristics.

The information read is a block of data (such as a loader program) pre-

ceded by a pointer for the BLKI instructions. The left half of the pointer

contains the negative of the number of words in the block, the right half

contains an address one less than that of the location that is to receive the

first word.

2.13 PRIORITY INTERRUPT 2-73

To read in, the operator must set up the device he is using, set its code

into the readin device switches, and press the readin key. The processor

places the device in operation, brings the first word (the pointer) into

location 0, and then reads the data block, placing the words in the locations

specified by the pointer. Data can be placed anywhere in memory (including

fast memory) except in location 0. The operation affects none of memory
except location and the block area.

Upon completing the block, the processor halts only if the single instruc-

tion switch is on. Otherwise it leaves readin mode, and begins normal

operation by executing the last word in the block as an instruction.

Console Data Transfers

Neither the processor nor the priority interrupt system require all four types

of IO instructions, so the program can make use of their device codes for

communicating with the console.

DATAI APR, Data In, Console

70004

2-74 CENTRAL PROCESSOR 2.13

result in loss of information and certainly results in operating the device

below its maximum speed. The priority interrupt is designed with these

considerations in mind, ie the use of interruptions in the current program

sequence facilitates concurrent operation of the main program and a number
of peripheral devices. The hardware also allows conditions internal to the

processor to signal the program by requesting an interrupt.

Interrupt requests are handled through seven channels arranged in a

priority chain, with assignment of devices to channels entirely at the discre-

tion of the programmer. To assign a device to a channel, the program sends

the number of the channel to the device control register as part of the condi-

tions given by a CONO (usually bits 33-35). Channels are numbered 1-7,
with 1 having the highest priority; a zero assignment disconnects the device

from the interrupt channels altogether. Any number of devices can be

connected to a single channel, and some can be connected to two channels

(eg a device may signal that data is ready on one channel, that an error has

occurred on another).

Interrupt Requests. When a device requires service it sends an interrupt

request signal over the in-out bus to its assigned channel in the processor. If

the channel is on, the processor accepts the request at the next memory
access unless the processor is either starting an interrupt on any channel or

holding an interrupt on the same channel. The request signal is a level, so

it remains on the bus until turned off by the program (CONO, DATAO or

DATAI). Thus if a request is not accepted because of the conditions given

above, it will be accepted when those conditions no longer hold. A single

channel will shut out all others of lower priority if every time its service

routine dismisses the interrupt, a device assigned to it is already waiting with

another request. The program can usually trigger a request from a device but

delay its acceptance by turning on the channel later.

Starting an Interrupt. After a request is accepted the channel must wait

for the interrupt to start. No interrupts can be started unless the priority

interrupt system is active. Furthermore, the processor cannot start an

interrupt if it is alreadyt holding an interrupt on a channel with priority

higher than those on which requests have been accepted (in other words if

the current program is a higher priority interrupt routine). If there is a

higher priority channel waiting, the processor stops the current program to

start an interrupt on the waiting channel that has highest priority. The inter-

rupt starts following the retrieval of an instruction, following the retrieval of

an address word in an effective address calculation (including the second cal-

culation using the pointer in a byte instruction), or following a transfer in a

BLT. When an interrupt starts, PC points to the interrupted instruction, so

that a correct return can later be made to the interrupted program.

Two memory locations are assigned to each channel: unrelocated locations

Interrupt locations for a sec- 40 + 2N and 4 1 + 27V, where TV is the channel number. Channel 1 uses loca-

ond processor are 140 + 2N tions 42 and 43, channel 2 uses 44 and 45, and so on to channel 7 which
and 141 f 2N. uses 5^ an(j 57 -j^g processor starts an interrupt on channel TV by executing

the instruction in location 40 + 2N.

An instruction executed by the interrupt hardware in response to an

interrupt request is referred to elsewhere in this manual as being executed

"as an interrupt instruction". Some instructions, when so executed, perform

2.13 PRIORITY INTERRUPT 2-75

different functions than they do when executed in other circumstances. And
the difference is not due merely to being executed in an interrupt location or

in response (by the program) to an interrupt. To be an interrupt instruction,

an instruction must be executed by the interrupt hardware, in location

40 + 27V or 41 + 27V, because of a request on channel TV. 2.12 describes

the two ways a BLKO is performed. If a BLKO is contained in an interrupt

routine called by a JSR, it is not executed "as an interrupt instruction" even

if the routine is stored within the interrupt locations. There are two

categories of interrupt instructions.

* Non-10 Instructions. After executing a non-IO interrupt instruction, the

processor holds an interrupt on the channel and returns control to PC. Hence

the instruction is usually a jump to a service routine. If the processor is in

user mode and the interrupt instruction is a JSR, JSP, PUSHJ, JSA or JRST,
the processor leaves user mode (the Monitor thus handles all interrupt rou-

tines [2.15]).
If the interrupt instruction is not a jump, the processor continues the

interrupted program while holding an interrupt in other words it now
treats the interrupted program as an interrupt routine. Eg the instruction

might just move a word to a particular location. Such procedures are

usually reserved for maintainence routines or very sophisticated programs.

4 Block or Data IO Instructions. One or the other of two actions can result

from executing one of these as an interrupt instruction.

If the instruction in 40 + 27V is a BLKI or BLKO and the block is not

finished (ie the count does not cause the left half of the pointer to reach

zero), the processor holds and immediately dismisses an interrupt on the

channel, and returns to the interrupted program. The same action results

if the instruction is a DATAI or DATAO.

If the instruction in 40 + 27V is a BLKI or BLKO and the count does reach

zero, the processor continues to start the interrupt by executing the

instruction in location 41 + 27V. This cannot be an IO instruction and the

actions that result from its execution as an interrupt instruction are those

given above for non-IO instructions.

-

CAUTION

The execution, as an interrupt instruction, of a

CONO, CONI, CONSO or CONSZ in location

40 + 27V or any IO instruction in location 41 + 27V

hangs up the processor.

Dismissing an Interrupt. Automatic dismissal of an interrupt occurs only

in a DATAI or DATAO, or in a BLKI or BLKO with an incomplete block.

Following any non-IO interrupt instruction, the processor holds an interrupt

until the program dismisses it, even if the interrupt routine is itself inter-

rupted by a higher priority channel. Thus interrupts can be held on a num-

ber of channels simultaneously, but from the time an interrupt is started

until it is dismissed, no interrupt can be started on that channel or any

channel of lower priority (requests, however, can be accepted on lower

priority channels).

2-76 CENTRAL PROCESSOR 2.13

A routine dismisses the interrupt by using a JEN (JRST 12,) to return to

the interrupted program (the interrupt system must be active when the JEN
is given). This instruction restores the channel on which the interrupt is

being held, so it can again accept requests, and interrupts can be started on

it and lower priority channels. JEN also restores the flags, whose states were

saved in the left half of the PC word if the routine was called by a JSR,

JSP, or PUSHJ [2.9]. If flag restoration is not desired, a JRST 10, can

be used instead.

CAUTION

An interrupt routine must dismiss the interrupt

when it returns to the interrupted program, or its

channel and all channels of lower priority will be

disabled, and the processor will treat the new

program as a continuation of the interrupt routine.

Priority Interrupt Conditions. The program can control the priority in-

terrupt system by means of condition IO instructions. The device code is

004, mnemonic PI.

CONO PI, Conditions Out, Priority Interrupt

70060

2.13 PRIORITY INTERRUPT 2-77

A request is lost if it is made by this means to a channel on which

an interrupt is already being held.

25 Turn on the channels selected by Is in bits 29-35 so interrupt

requests can be accepted on them.

26 Turn off the channels selected by Is in bits 29-35, so interrupt

requests cannot be accepted on them unless made by a CONO PI,

with a 1 in bit 24.

27 Deactivate the priority interrupt system. The processor can then still

accept requests, but it can neither start nor dismiss an interrupt.

28 Activate the priority interrupt system so the processor can accept

requests and can start, hold and dismiss interrupts.

CONI PI, Conditions In, Priority Interrupt

70064

2-78 CENTRAL PROCESSOR 2.14

it need never wait longer than the time required for the processor to finish

the instruction that is being performed when the request is made. The
maximum time can be considered to be about 1 5 /is for FDVL, but a ridicu-

lously long shift could take over 35 /is.

Special Considerations. On a return to an interrupted program, the proc-

essor always starts the interrupted instruction over from the beginning. This

causes special problems in a BLT and in byte manipulation.

An interrupt can start following any transfer in a BLT. When one does,

the BLT puts the pointer (which has counted off the number of transfers

already made) back in AC. Then when the instruction is restarted following

the interrupt, it actually starts with the next transfer. This means that if

interrupts are in use, the programmer cannot use the accumulator that holds

the pointer as an index register in the same BLT, he cannot have the BLT
load AC except by the final transfer, and he cannot expect AC to be the

same after the instruction as it was before.

An interrupt can also start in the second effective address calculation in a

two-part byte instruction. When this happens, Byte Interrupt is set. This

flag is saved as bit 4 of a PC word, and if it is restored by the interrupt

routine when the interrupt is dismissed, it prevents a restarted ILDB or

IDPB from incrementing the pointer a second time. This means that the

interrupt routine must check the flag before using the same pointer, as it

now points to the next byte. Giving an ILDB or IDPB would skip a byte.

And if the routine restores the flag, the interrupted ILDB or IDPB would

process the same byte the routine did.

Programming Suggestions. The Monitor handles all interrupts for user

programs. Even if the User In-out flag is set, a user program generally cannot

reference the interrupt locations to set them up. Procedures for informing

the Monitor of the interrupt requirements of a user program are discussed in

the Monitor manual.

For those who do program priority interrupt routines, there are several

rules to remember.

4 No requests can be accepted, not even on higher priority channels, while

a break is starting. Therefore do not use lengthy effective address calcula-

tions in interrupt instructions.

4 The interrupt instruction that calls the routine must save PC if there is to

be a return to the interrupted program. Generally a JSR is used as it saves

both PC and the flags, and it uses no accumulator.

* The principal function of an interrupt routine is to respond to the situa-

tion that caused the interrupt. Eg computations that can be performed
outside the routine should not be included within it.

* The routine must dismiss the interrupt (with a JEN) when returning to the

interrupted program. The flags should be restored.

2.14 PROCESSOR CONDITIONS

There are a number of internal conditions that can signal the program by

requesting an interrupt on a channel assigned to the processor. Flags for

2.14 PROCESSOR CONDITIONS 2-79

power failure and parity error are handled by the condition IO instructions

that address the priority interrupt system [2.13]. The remaining flags are

handled by condition instructions that address the processor. Its device code

is 000, mnemonic APR or CPA.

CONG APR, Conditions Out, Arithmetic Processor

70020

2-80 CENTRAL PROCESSOR 2.14

Notes.

19 Pushdown Overflow - in a PUSH or PUSHJ the count in AC left

reached zero; or in a POP or POPJ the count reached - 1 . The setting

of this flag requests an interrupt.

20 User In-out even if the processor is in user mode, the restrictions

on user instructions do not apply [2.15].

21 Address Break while the console address break switch was on, the

processor requested access to the memoiy location specified by the

address switches and the memory reference was for the purpose
selected by the address condition switches as follows:

The instruction switch was on and access was for retrieval of an

instruction (including an instruction executed by an XCT or con-

tained in an interrupt location or a trap for an unimplemented

operation) or an address word in an effective address calculation.

The data fetch switch was on and access was for retrieval of an

operand (other than in an XCT).

The write switch was on and access was for writing a word in

memory.

The setting of this flag requests an interrupt, at which time PC points

to the instruction that was being executed or to the one following it.

22 Memory Protection a user program attempted to access a memory
location outside of its assigned area and the user instruction was ter-

minated at that time. The setting of this flag requests an interrupt,

at which time PC points either to the instruction that caused the

violation or the one following it.

23 Nonexistent Memory the processor attempted to access a memory
that did not respond within 1 00 jus. The setting of this flag requests

an interrupt, at which time PC points either to the instruction con-

taining the unanswered reference or to the one following it.

26 Clock this flag is set at the ac power line frequency and can thus

be used for low resolution timing (the clock has high long term

accuracy). If bit 25 is set, the setting of the Clock flag requests an

interrupt.

29 Floating Overflow this is one of the flags saved in a PC word, and

the conditions that set it are given at the beginning of 2.9. If bit 28

is set, the setting of Floating Overflow requests an interrupt, at which

time PC points to the instruction following that in which the over-

flow occurred.

30 Trap Offset the processor is using locations 140-161 for unimple-
mented operation traps and interrupt locations.

32 Overflow this is one of the flags saved in a PC word, and the condi-

tions that set it are given at the beginning of 2.9. If bit 31 is set,

the setting of Overflow requests an interrupt, at which time PC

points to the instruction following that in which the overflow

occurred.

Basic In-out Equipment

The PDF- 10 contains three in-out devices as standard equipment: tape

reader, tape punch, and teletype. These devices are used principally for

communication between computer and operator using a paper medium, tape

or form paper.

The punch supplies output in the form of 8-channel perforated paper tape

in either of two modes. In alphanumeric mode, 8-bit characters are proc-

essed; in binary mode, 6-bit characters. The information punched in the

tape can be brought into memory by the tape reader, which handles charac-

ters in the same two modes.

The program can type out characters on the teletype and can read charac-

ters that have been typed in at the keyboard. This device has the slowest

transfer rate of any, but it provides a convenient means of man-machine

interaction.

3.1 PAPER TAPE READER

The reader processes 8-channel perforated paper tape photoelectrically at a

speed of 300 lines per second. The device can operate in alphanumeric or

binary mode, as specified by the or 1 state respectively of the Binary flag.

In alphanumeric a single tape-moving command reads all eight channels from

the first line encountered. In binary the device reads six channels from the

first six lines in which hole 8 is punched and assembles the information into

a 36-bit word. The interface contains a 36-bit buffer from which all data is

retrieved by the processor. The reader device code is 1 04, mnemonic PTR.

CONO PTR, Conditions Out, Paper Tape Reader

7 1060

3-2 BASIC IN-OUT EQUIPMENT

CONI PTR, Conditions In, Paper Tape Reader

3.1

71064

3.1 PAPER TAPE READER 3-3

EXAMPLES. This program reads ten binary words (60 lines) from paper

tape and stores them in memory beginning at location 4000. The block

pointer is kept in accumulator PNT.

NEXT:

MOVE PNTJIOWD 12,4000] ;Put pointer in PNT
CONO
CONSO
JRST
BLKI
JRST
JRST

PTR,60
PTR,10
.-1

PTR,PNT
.+2

NEXT

;Set up reader

;Watch Done

;Word ready, get it

;Got all data

;Go gack for next word

If instead of just waiting we wish to continue our program while the data

is coming in, we can use the priority interrupt. The following uses channel 4

and signals the main program that the data is ready by setting bit 35 of

accumulator F.

MOVE
MOVEM
MOVE
MOVEM
CONO
CONO

TRZN
JRST

17, [BLKI PTRJIOWD 12,4000]]

17,50 ;Set up 50 and 5 1 for channel 4

17,[JSR DONE]
17,51

PTR,64 ;Set up reader on channel 4

PI, 12210 ;Clear PI, then activate it and turn on

;channel 4

;Continue program

.-1

;Check if data ready when needed

;Wait if necessary

DONE:
CONO PTR,0
TRO F, 1

JEN DONE

Interrupt routine, block done

;Stop tape

;Set F bit 35

;
Dismiss and restore flags

Operation. Tapes must be unoiled and opaque. The reader is located just

above the console operator panel. To load it, place the fanfold tape stack

vertically in the bin at the right, oriented so that the front end of the tape is

nearer the read head and the feed holes are away from you. Lift the gate,

take three or four folds of tape from the bin, and slip the tape into the rea-

der from the front. Carefully line up the feed holes with the sprocket teeth

to avoid damaging the tape, and close the gate. Make sure that the part of

the tape in the left bin is placed to correspond to the folds, otherwise it will

not stack properly. If the program requires that the Tape flag be set and it is

not, briefly press the white feed button located on the face of the reader.

After the program has finished reading the tape, run out the remaining

trailer by pressing the feed button.

Indicators for the reader are on the panel at the top of bay 1 (the panel is

3-4 BASIC IN-OUT EQUIPMENT 3.1

pictured in Appendix C). The paper tape reader lights in the second row
from the bottom display the contents of the buffer. The PI assignment and

flags are displayed in the PTR lights in the middle of the third row (EOT is

the Tape flag). The remaining PTR lights are for maintenance.

This loader is written for min-

imum size and is quite com-

plex. Do not approach it as a

simple programming example.

("5

H
\f

Readin Mode

The only requirement (beyond those given in 2.12) for readin mode with

paper tape is that the data must be in binary (hole 8 punched). To select

the reader in the readin device switches, turn on the third from the left and

the last on the right (1 04).

The program below is the RIM 1 OB Loader, which is brought into the

accumulators in readin mode, and then continues to read any number of

blocks of binary data from the same tape. The tape is formatted as a series

of blocks separated by a half-dozen lines of blank tape (tape with only feed

holes punched). The first block is the loader in readin format. The rest of

the tape contains any number of data blocks and ends with a transfer block.

Each data block contains any number of words of program data, preceded

by a standard IO block pointer for the data only, and followed by a check-

sum, which is the sum of all the data words and the pointer. It is recom-

mended that the number of data words per block be limited to twenty for

ease in repositioning the tape in case of error. The transfer block is a JRST
to the starting location of the program, followed by a throw-away word to

stop the reader.

ST:

ST1:

RD:

A:

TBL1:

TBL2:

ADR:

XWD
CONO
HRRI
CONSO
JRST
DATAI

XCT

XCT

SOJA

CAME

ADD
SKIPL

JRST
AOBJN

;
14 10 words starting at location 1

;Set up reader binary

;PutRD+l in Y part of A
;Watch Done

JRST ST1

7 CKSM=ADR+1

-16,0

PTR, 60

A,RD+1
PTR, 10

.-1

PTR,@TBL1-RD+1(A) ;First and last words in

;ADR, data in block

TBLl-RD-t-l(A) ;TBLl+2 first word, +1 data,

;+0 checksum

TBL2-RD+1(A) ;TBL2+2 JRST, +1 data, +0

;bad checksum

A, _ ;RD+1 first word, RD data, RD-1
;last word

CKSM,ADR ;Compare computed checksum with

;one read

CKSM, l(ADR) ;Add word read to checksum

CKSM,ADR ;Put first word in CKSM, skip if

;pointer

;Halt if checksum bad

;If data done, go to A; otherwise wait

;for next word

;Read in executes this. First and last

;word of each block also put here

4,ST

ADR,RD

3.2 PAPER TAPE PUNCH

The processor halts if a computed checksum does not agree with the tape.

To reread a block, move the tape back to the preceding blank area and press

the continue key. A halt following the transfer block is not an error many
programs begin by halting.

3.2 PAPER TAPE PUNCH

The punch perforates 8-channel tape at speeds up to 50 lines per second. It

can operate in alphanumeric or binary mode, as specified by the or 1 state

respectively of the Binary flag; but in either mode a single tape-moving
command punches only one line. Alphanumeric mode punches an 8-bit

character supplied by the program; binary mode always punches channel 8,

never punches channel 7, and punches a 6-bit character in the remaining
channels. The interface contains an 8-bit buffer that receives data from the

processor. The punch device code is 100, mnemonic FTP.

3-5

COIMO PTP, Conditions Out, Paper Tape Punch

71020

3-6 BASIC IN-OUT EQUIPMENT

DATAO FTP, Data Out, Paper Tape Punch

3.2

71014

3.3 TELETYPE 3-7

bin from which the operator may remove it through a slot on the front.

Pushing the feed button beside the slot clears the punch buffer and punches
blank tape as long as it is held in. Busy being set prevents the button from

clearing the buffer, so pressing it cannot interfere with program punching.
To load tape, first empty the chad box behind the punch. Then tear off

the top of a box of fanfold tape (the top has a single flap; the bottom of the

box has a small flap in the center as well as the flap that extends the full

length of the box). Set the box in the frame at the back and thread the tape

through the punch mechanism. The arrows on the tape should be under-

neath and should point in the direction of tape motion. If they are on top,
turn the box around. If they point in the opposite direction, the box was

opened at the wrong end; remove the box, seal up the bottom, open the top,
and thread the tape correctly.

To facilitate loading, tear or cut the end of the tape diagonally. Thread
the tape under the out-of-tape plate, open the front guide plate (over the

sprocket wheel), push the tape beyond the sprocket wheel, and close the

front guide plate. Press the feed button long enough to punch about a foot

and a half of leader. Make sure the tape is feeding and folding properly in

the storage bin. Pushing the button labeled POWER sets No Tape, pushing
it again clears the flag. It can be used to hold the program at bay while a

tape is being loaded.

To remove a length of perforated tape from the bin, first press the feed

button long enough to provide an adequate trailer at the end of the tape

(and also leader at the beginning of the next length of tape). Remove the

tape from the bin and tear it off at a fold within the area in which only feed

holes are punched. Make sure that the tape left in the bin is stacked to

correspond to the folds; otherwise, it will not stack properly as it is being
punched. After removal, turn the tape stack over so the beginning of the

tape is on top, and label it with name, date, and other appropriate
information.

Indicators for the punch are the PTP lights in the top row of the panel
at the top of bay 1 . The numbered lights display the last line punched.

3.3 TELETYPE

Two teletypewriter models are regularly available with the POP- 10 for use
at the console: the KSR 35, which is capable of speeds up to ten characters

per second, and the KSR 37, which can handle up to fifteen characters per
second. The program can type out characters and can read in the characters

produced when keys are struck at the keyboard.
The teletype separates its input and output functions and in effect acts

like two devices with a single device code: each has its own Busy and Done
flags, but the two share a common interrupt channel. Placing the code for a

character in the output buffer causes the teletype to print the character or

perform the designated control function. Striking a key places the code for

the associated character in the input buffer where it can be retrieved by the

program, but it does nothing at the teletype unless the program sends the

code back as output.

3-8 BASIC IN-OUT EQUIPMENT }3.3

Character codes received from the teletype have eight bits wherein the

most significant is an even parity bit. The Model 35 ignores the parity bit

in characters transmitted to it. The Model 37 ignores the parity bit in a

code for a printable character, but it performs no function when it receives

a control code with incorrect parity.

The Model 37 has the entire character set listed in the table in Appendix
B. Lower case characters are not available on the Model 35, but transmitting

a lower case code to the teletype causes it to print the corresponding upper
case character. To go to the beginning of a new line the program must send

both a carriage return, which moves the type box to the left margin, and

a line feed, which spaces the paper. The teletype device code is 120,

mnemonic TTY.

CONO TTY, Conditions Out, Teletype

7 1 220

3.3 TELETYPE 3-9

DATAI TTY, Data In, Teletype

71204

BASIC IN-OUT EQUIPMENT

Teletype KSR 35 have separate keys. Note also that both the keyboard arrangement and the

labels differ somewhat. On both, the line feed (labeled "new line" on the 37)

spaces the paper vertically at six lines to the inch, and must be combined
with a return to start a new line. The local advance (feed) and return keys
affect the printer directly and do not transmit codes. Appendix B lists the

complete teletype code, ASCII characters, key combinations, and differences

between the two models.

Indicators for the teletype are the TTY lights in the second row of the

TELETYPE

panel at the top of bay 1. The numbered lights display the last character

typed in from the keyboard (bit 8 is parity). The ACT lights indicate

activity in the transmitter and receiver. The remaining lights display the PI

assignment and flags (the Input and Output Done flags are labeled TTI
FLAG and TTO FLAG).

Teletype manuals supplied with the equipment give complete, illustrated

descriptions of the procedures for loading paper, changing the ribbon, and

setting horizontal and vertical tabs. The first two procedures are fairly

Teletype KSR 37

3-12 BASIC IN-OUT EQUIPMENT 3.3

obvious: observe the paper or ribbon path and duplicate it. The other tasks

are usually left for maintenance personnel. In any event, the best and easiest

way to learn to do any of these things is to have someone who knows show

you how.

Appendices

APPENDIX A

INSTRUCTION AND DEVICE MNEMONICS

The illustration on the next page shows the derivation of the instruction

mnemonics. The two tables following it list all instruction mnemonics and
their octal codes both numerically and alphabetically. When two mnemonics
are given for the same octal code, the first is the preferred form, but the

assembler does recognize the second. For completeness, UUOs are listed for

user mode (an asterisk indicates a UUO mnemonic recognized by MACRO for

communication with the PDF- 10 Time Sharing Monitor). All UUOs
000-077 are identical when the processor is not in user mode.

In-out device codes are included only in the alphabetic listing and are

indicated by a dagger (f). Following the tables is a chart that lists the

devices with their mnemonic and octal codes and DEC option numbers for

both POP- 10 and PDP-6. A device mnemonic ending in the numeral 2 is

the recommended form for the second of a given device, but such codes are

not recognized by MACRO -
they must be defined by the user.

Al

A2 MNEMONICS

E

NUMERIC LISTING A3

INSTRUCTION MNEMONICS

NUMERIC LISTING

000

001

037

040

041

042

043

044

045

046

047

050

051

052

053

054

055

056

057

060

061

062

062

063

064

065

066

067

070

071

072

073

074

075

076

077

100

127

130

131

ILLEGAL

USER
UUO'S

*CALL
*INIT

RESERVED
FOR

SPECIAL
MONITORS

*CALLI
*OPEN

RESERVED
FOR DEC

*RENAME
*IN

*OUT
*SETSTS
*STATO
*STATUS
*GETSTS
*STATZ
*INBUF
*OUTBUF
*INPUT
"OUTPUT
*CLOSE
*RELEAS
*MTAPE
*UGETF
*USETI
*USETO
*LOOKUP
*ENTER

UNASSIGNED
CODES

UFA
DFN

132

A4 MNEMONICS

25510

NUMERIC LISTING A5

465

A6 MNEMONICS

INSTRUCTION MNEMONICS

ALPHABETIC LISTING

fADC
ADD
ADDB
ADDI
ADDM
AND
ANDB
ANDCA
ANDCAB
ANDCAI
ANDCAM
ANDCB
ANDCBB
ANDCBI
ANDCBM
ANDCM
ANDCMB
ANDCMI
ANDCMM
ANDI
ANDM
AOBJN
AOBJP
AOJ
AOJA
AOJE
AOJG
AOJGE
AOJL
AOJLE
AOJN
AOS
AOSA
AOSE
AOSG
AOSGE
AOSL
AOSLE
AOSN
tAPR
ASH
ASHC
BLKI
BLKO

024

270

273

271

272

404

407

410

413

411

412

440

443

441

442

420

423

421

422

405

406

253

252

340

344

342

347

345

341

343

346

350

354

352

357

355

351

353

356

000

240

244

70000
70010

BLT
CAI
CAIA
CAIE
CAIG
CAIGE
CAIL
CAILE
CAIN
*CALL
*CALLI
CAM
CAMA
CAME
CAMG
CAMGE
CAML
CAMLE
CAMN

tcci

fCDP
fCDR
CLEAR
CLEARS
CLEARI
CLEARM
*CLOSE
CONI
CONO
CONSO
CONSZ
tCPA
tCR
DATAI
DATAO
tDC
tDCSA
tDCSB
fDF
DFN

fDIS
DIV
DIVB
DIVI

251

300

304

302

307

305

301

303

306

040

047

310

314

312

317

315

311

313

316

014

110

114

400

403

401

402

070

70024

70020

70034

70030

000

150

70004

70014

200

300

304

270

131

130

234

237

235

DIVM

ALPHABETIC LISTING A7

FSC

A8 MNEMONICS

ORCBM
ORCM
ORCMB
ORCMI
ORCMM
ORI
ORM
*OUT
*OUTBUF
"OUTPUT
tPI

fPLT
POP
POPJ

fPTP
fPTR
PUSH
PUSHJ
*RELEAS
*RENAME
ROT
ROTC
RSW
SETA
SETAB
SETAI
SETAM
SETCA
SETCAB
SETCAI
SETCAM
SETCM
SETCMB
SETCMI
SETCMM
SETM
SETMB
SETMI
SETMM
SETO
SETOB
SETOI
SETOM
*SETSTS
SETZ
SETZB
SETZI
SETZM
SKIP

472

464

467

465

466

435

436

057

065

067

004

140

262

263

100

104

261

260

071

055

241

245

70004

424

427

425

426

450

453

451

452

460

463

461

462

414

417

415

416

474

477

475

476

060

400

403

401

402

330

SKIPA

ALPHABETIC LISTING A9

*USETI 074 tUTS 214 XORB 433

*USETO 075 XCT 256 XORI 431

fUTC 210 XOR 430 XORM 432

A10 MNEMONICS

APPENDIX B

INPUT-OUTPUT CODES

The table beginning on the next page lists the complete teletype code. The

lower case character set (codes 140-176) is not available on the Model 35,

but giving one of these codes causes the teletype to print the corresponding

upper case character. Other differences between the 35 and 37 are men-

tioned in the table. The definitions of the control codes are those given by
ASCII. Most control codes, however, have no effect on the console teletype,

and the definitions bear no necessary relation to the use of the codes in con-

junction with the POP- 10 software.

The line printer has the same codes and characters as the teletype. The

64-character printer has the figure and upper case sets, codes 040-137

(again, giving a lower case code prints the upper case character). The "96"-

character printer has these plus the lower case set, codes 040-176. The

latter printer actually has only ninety-five characters unless a special charac-

ter is "hidden" under the delete code, 177. A hidden character is printed by

sending its code prefixed by the delete code. Hence a character hidden under

DEL is printed by sending the printer two 1 77s in a row.

Besides printing characters, the line printer responds to ten control charac-

ters, HT, CR, LF, VT, FF, OLE and DC 1-4. The 1 28-character printer uses

the entire set of 7-bit codes for printable characters, with characters hidden

under the ten control characters that affect the printer and also under null

and delete. In all cases, prefixing DEL causes the hidden character to be

printed. The extra thirty-three characters that complete the set are ordered

special for each installation.

The first page of the table of card codes [pages B6-8] lists the column

punch required to represent any character in the two DEC codes. The octal

codes listed are those used by the PDF- 10 software. In other words, when

reading cards, the Monitor translates the column punch into the octal code

shown; when punching cards, it produces the listed column punch when

given the corresponding code. The remaining pages of the table show the

relationship between the DEC card codes and several IBM card punches.

Each of the column punches is produced by a single key on any punch for

which a character is listed, the character being that which is printed at the

top of the card.

Bl

B2 INPUT-OUTPUT CODES

TELETYPE CODE

Even 7-Bit

Parity Octal

Bit Code Character Remarks

000 NUL Null, tape feed. Repeats on Model 37. Control shift P on Model 35.

1 001 SOH Start of heading; also SOM, start of message. Control A.

1 002 STX Start of text; also EGA, end of address. Control B.

003 ETX End of text; also EOM, end of message. Control C.

1 004 EOT End of transmission (END); shuts off TWX machines. Control D.

005 ENQ Enquiry (ENQRY); also WRU, "Who are you?" Triggers identification

("Here is ... ") at remote station if so equipped. Control E.

006 ACK Acknowledge; also RU, "Are you ... ?" Control F.

1 007 BEL Rings the bell. Control G.

1 010 BS Backspace; also FEO, format effector. Backspaces some machines.

Repeats on Model 37. Control H on Model 35.

Oil HT Horizontal tab. Control I on Model 35.

012 LF Line feed or line space (NEW LINE); advances paper to next line. Repeats
on Model 37. Duplicated by control J on Model 35.

1 013 VT Vertical tab (VTAB). Control K on Model 35.

014 FF Form feed to top of next page (PAGE). Control L.

1 015 CR Carriage return to beginning of line. Control M on Model 35.

1 016 SO Shift out; changes ribbon color to red. Control N.

017 SI Shift in; changes ribbon color to black. Control O.

1 020 OLE Data link escape. Control P (DCO).

02 1 DC 1 Device control 1
, turns transmitter (reader) on. Control Q (X ON).

022 DC2 Device control 2, turns punch or auxiliary on. Control R (TAPE,
AUX ON).

1 023 DC3 Device control 3, turns transmitter (reader) off. Control S (X OFF).

024 DC4 Device control 4, turns punch or auxiliary off. Control T (TAPE,
AUX OFF).

1 025 NAK Negative acknowledge; also ERR, error. Control U.

1 026 SYN Synchronous idle (SYNC). Control V.

027 ETB End of transmission block; also LEM, logical end of medium. Control W.

030 CAN Cancel (CANCL). Control X.

1 031 EM End of medium. Control Y.

1 032 SUB Substitute. Control Z.

033 ESC Escape, prefix. This code is generated by control shift K on Model 35,

but the Monitor translates it to 175.

1 034 FS File separator. Control shift L on Model 35.

035 GS Group separator. Control shift M on Model 35.

TELETYPE CODE B3

Even

Parity
Bit

B4 INPUT-OUTPUT CODES

Even

Parity
Bit

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

TELETYPE CODE B5

Even

B6 INPUT-OUTPUT CODES

CARD CODES

PDF- 10

CARD CODES B7

Column

B8 INPUT-OUTPUT CODES

Column
Punch

12 8 7

1182
1183

1184
1185

1186
1187
082
083
084
085
086
087
12 11 1

12 2 4 6 8

7 9

026 Data

Processing

$

*

026
Fortran

S

*

029

H
See note

DEC 026

!

$

*

&

DEC 029

t

$

)

>

\

End of File End of File

Mode Switch Mode Switch

Binary Binary

Octal

4006

2202

2102

2042

2022

2012

2006

1202

1102

1042

1022

1012

1006

7400

5252

NOTE: There is a single key for the 082 punch on the 029 but printing is suppressed.

The Monitor translates the octal code for the 1 2 punch in DEC 026 to 4202 (which corresponds to a

1282 punch), and the code for 1 1 to 2202 (11 82).

APPENDIX C

MISCELLANY

Instruction Flow Simplified C2

Word Formats C3

Instruction Timing Flow Chart C4

In-out Device Bit Assignments C6

Indicator Panels Cg

Powers of Two CIO

Cl

C2 MISCELLANY

INSTRUCTION
FETCH

INTERRUPT
REQUEST

BYT INSTR. CALCULATION

BLKI, BLKO

DATA
FETCH

POINTER DONE IN INTERRUPT
REQUEST

INSTRUCTION
EXECUTIONBYTE, BLKI, BLK

DATA
STORE

INSTRUCTION FLOW SIMPLIFIED

WORD FORMATS C3

BASIC INSTRUCTIONS

INSTRUCTION CODE
(INCLUDING MODE)

C4 MISCELLANY

. "(.10 L
|
"IF IN USER MODE [

INSTRUCTION TIMING

FLOW CHART

INSTRUCTION TIMING C5

INSTRUCTION EXECUTION

t >

C6 MISCELLANY

-

n

S? ri

nm

SiS5

fe!>?

tu ^(

3s!

!

tat

i S :

5*|
;

J,p?*Sp Jp
dim?

Sa

IN-OUT DEVICE BIT ASSIGNMENTS C7

C8 MISCELLANY

(N

ed

M

o

o

03

O

o>
o
s
OH
O

s
4->

c

C3

c-

03
CJ

3

c
OH

O

INDICATOR PANELS C9

a.

oo

o
6

o

o

<u

n)
a.

T3
C

05

m
VO

O
E

->

v*
O

o
03

o

O

CIO MISCELLANY

POWERS OF TWO

1 1.0

2 1 05
4 2 0.25

8 3 0.125

16 4 0.062 5

32 5 0.031 25

64 6 0.015 625
128 7 0.007 812 5

256 8 0.003 906 25

512. 9 0.001 953 125

1 024 10 0.000 976 562 5

2 048 11 0.000 488 281 25

4 096 12 0.000 244 140 625

8 192 13 0.000 122 070 312 5

16-384 14 0.000 061 035 156 25

32 768 15 0.000 030 517 578 125

65 53& 16 0.000 015 258 789 062 b

131 072 17 0.000 007 629 394 531 25

262 144 18 0.000 003 814 697 265 625
524 288 19 0.000 001 907 348 632 812 5

1 048 576 2Q 0.000 000 953 674 316 406 25

*2 097 152 21 0.000 000 476 837 158 203 125

4 194 304 22 0.000 000 238 418 579 101 562 5

8 388 608 23 0.000 000 119 209 289 550 781 25

16 777 216 24 0.000 000 059 604 644 775 390 625
33 554 432 25 0.000 000 029 802 322 387 695 312 5

67 108 864 26 0.000 000 014 901 161 193 847 656 25 T7
134 217 728 27 0.000 OOP 007 450 580 596 923 828 125

268 435 456 28 O.OOO 000 003 725 290 298 461 914 062 5

536 870 912 29 0.000 000 001 862 645 149 230 957 031 25

1 073 741 824 30 0.000 000 000 931 322 574 615 478 515 625
2 147 483 648 31 0.000 000 000 465 661 287 307 739 257 812 5

4 294 967 296 32 0.000 000 000 232 830 643 653 869 628 906 25

8 589 934 592 33 0.000 000 000 116 415 321 826 934 814 453 125

17 179 869 184 34 0.000 000 000 058 207 660 913 467 407 226 562 5

34 359 738 368 35 0.000 000 000 029 103 830 456 733 703 613 281 25
68 719 476 736 36 0.000 000 000 014 551 915 228 366 851 806 640 625
137 438 953 472 37 0.000 000 000 007 275 957 614 183 425 903 320 312 5

274 877 906 944 38 0.000 000 000 003 637 978 807 091 712 951 660 156 25

549 755 813 888 39 0.000 000 000 001 818 989 403 545 856 475 830 078 125

1 099 511 627 776 40 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5

2 199 023 255 552 41 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25
4 398 046 511 104 42 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625
8 796 093 022 208 43 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5

17 592 186 044 416 44 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25
35 184 372 088 &32 45 000 000 000 000 028 421 709 430 404 007 434 844 970 703 125

70 368 744 \TJ 664 46 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5

140 737 488 355 328 47 0000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25
281 474 976 710 656 48 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625
562 949 953 421 312 49 0000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5

1 125 899 906 842 624 50 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25

2 251 799 813 685 248 51 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125

4 503 599 627 370 496 52 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 n
9 007 199 254 740 992 53 0000 000 000 000 000 111 022 302 462 515 654 042 363 166 809 082 031 25 _ .

"

J8 014 398 509 481 984 54 Q.OQO OOO OOP OOP OOP OSS 511 1S1 P31 257 827 021.181 583 404 541 015 625,
* V

36 028 797 018 963 968 55 0.000 000 000 000 000 027 755 575 615 628 913 510 590 791 702 270 507 812 5

72 057 594 037 927 936 56 0.000 OOO 000 000 000 013 877 787 807 814 456 755 295 395 851 135 253 906 25

144 115 188 075 855 872 57 0.000 000 000 000 000 006 938 893 903 907 228 377 647 697 925 567 626 953 125

288 230 376 151 711 744 58 0000 000 000 000 000 003 469 446 951 953 614 188 823 848 962 783 813 476 562 5

576 460 752 303 423 488 59 0000 000 000 000 000 001 734 723 475 976 807 094 411 924 481 391 906 738 281 25

1 152 921 504 606 846 976 60 0.000 000 000 000 000 000 867 361 737 988 403 547 205 962 240 695 953 369 140 625

2 305 843 009 213 693 952 61 0.000 000 000 000 000 000 433 680 868 994 201 773 602 981 120 347 976 684 570 312 5

4 611 686 018 427 387 904 62 0.000 000 000 000 000 000 216 840 434 497 100 886 801 490 560 173 988 342 285 156 25

9 223 372 036 854 775 808 63 0.000 000 000 000 000 000 108 420 217 248 550 443 400 745 280 086 994 171 142 578 125

18 446 744 073 709 551 616 64 0000 000 000 000 000 000 054 210 108 624 275 221 700 372 640 043 497 085 571 289 062 5

36 893 488 147 419 103 232 65 0.000 000 000 000 000 000 027 105 054 312 137 610 850 186 320 021 748 542 785 644 531 25

73 786 976 294 838 206 464 66 0000 000 000 000 000 000 013 552 527 156 068 805 425 093 160 010 874 271 392 822 265 625

147 573 952 589 676 412 928 67 0000 000 000 000 000 000 006 776 263 578 034 402 712 546 580 005 437 135 696 411 132 812 5

295 147 90t> 179 352 825 856 68 0000 OOO 000 000 000 000 003 388 131 789 017 201 356 273 290 002 718 567 848 205 566 406 25

590 29ry 810 358 705 651 712 69 0000 000 000 000 000 000 001 694 065 894 508 600 678 136 645 001 359 283 924 102 783 203 125

1 180 591 620 717 411 303 424 70 0000 000 000 000 000 000 000 847 032 947 254 300 339 068 322 500 679 641 962 051 391 601 562 5

2 361 183 241 434 822 606 848 71 0000 000 000 000 000 000 000 423 516 473 627 150 169 534 161 250 339 820 981 025 695 800 781 25

4 722 366 482 869 645 213 696 72 0000 000 000 000 000 000 000 211 758 236 813 575 084 767 080 625 169 910 490 512 847 900 390 625

\

