perm filename LABEL.DOC[DOC,LMM]2 blob
sn#056029 filedate 1973-07-31 generic text, type T, neo UTF8
␈↓ βTLABELLING OBJECTS HAVING SYMMETRY
␈↓␈↓ ∧'L. Masinter, N.S. Sridharan, D. H. Smith
␈↓ ∧kComputer Science Department
␈↓ ¬*Stanford University
␈↓ ¬*Stanford, California
␈↓ ¬←May, 1973
␈↓␈↓ α(ABSTRACT.␈αAn␈αalgorithm␈α
for␈αfinding␈αa␈α
complete␈αset␈αof␈α
non-equivalent␈αlabellings
␈↓ α(of␈α
a␈α
symmetric␈αobject␈α
and␈α
applications␈αof␈α
the␈α
algorithm␈αto␈α
problems␈α
in␈αchemistry
␈↓ α(are␈α
presented.
␈↓␈↓ ¬F␈↓αINTRODUCTION␈↓
␈↓The␈αclass␈αof␈αcombinatorial␈αproblems␈αdealing␈αwith␈αfinding␈αa␈αcomplete␈αset␈αof␈αnon-isomorphic␈αobjects
under␈αvarying␈α
constraints␈αand␈α
concepts␈αof␈αisomorphism,␈α
has␈αwide␈α
applications␈αin␈α
a␈αvariety␈αof␈α
fields.
The␈αproblem␈αattacked␈αin␈αthis␈αpaper␈αis␈αone␈αof␈αfinding␈αall␈αdistinct␈αways␈αto␈αassign␈αa␈αgiven␈αnumber␈αof
labels␈αor␈αcolors␈αto␈αthe␈αparts␈αof␈αa␈αsymmetric␈αobject␈αwhen␈αit␈αis␈αalso␈αknown␈αhow␈αmany␈αparts␈αget␈α
each
of␈αthe␈αlabels␈αor␈αcolors.␈αIn␈αchemistry,␈αone␈αmanifestation␈αof␈αthis␈αproblem␈αis␈αto␈αmake␈αall␈αassignments
of␈αligands␈α(from␈αa␈αfixed␈αset)␈α
to␈αa␈αgiven␈αcarbocyclic␈αskeleton␈↓#
1␈↓#.␈αPart␈α
A␈αof␈αthis␈αpaper␈αmay␈αbe␈αread␈α
as
␈↓a␈α
brief␈α
tutorial␈α
on␈α
the␈α
nature␈α
of␈α
the␈αproblem␈α
and␈α
an␈α
introduction␈α
to␈α
the␈α
terminology␈α
found␈αin␈α
more
technical␈αtreatments.␈αPart␈αB␈αis␈αa␈αtextual␈αdescription␈α
of␈αa␈αmethod␈αfor␈αthe␈αsolution␈αof␈αthis␈α
type␈αof
problem.␈αPart␈αC␈αis␈αa␈αsummary␈αof␈αthe␈αprocedure␈αin␈αa␈αmore␈αalgorithmic␈αform;␈αan␈αeven␈αmore␈αformal
description␈α∪and␈α∪a␈α∪proof␈α∪of␈α∪correctness␈α∪is␈α∪available␈α∪elsewhere␈↓#
2␈↓#.␈α∪ Part␈α∪D␈α∪gives␈α∪examples␈α∪and
␈↓applications␈α
of␈α
this␈α
algorithm␈α
in␈α
both␈α
organic␈α
and␈α
inorganic␈α
chemistry.
This␈αproblem␈αis␈αencountered␈αin␈αa␈αwide␈α
range␈αof␈αapplications␈αbeyond␈αchemistry--␈αwithin␈αmany␈α
areas
of␈α
graph␈α
theory␈α
and␈α
combinatorics,␈α
for␈α
example.␈α
It␈α
has␈α
been␈α
known␈α
how␈α
to␈α
compute␈α
the␈α
number␈α
of
solutions␈↓#
3␈↓#␈↓#
,␈↓#␈α
␈↓#
4␈↓#,␈α
but␈α
an␈α
efficent␈α
method␈αof␈α
actually␈α
constructing␈α
the␈α
solutions␈α
has␈α
not␈αpreviously␈α
been
␈↓published␈↓#
5␈↓#.
------------------
␈↓#
1␈↓#Masinter,␈αL.,␈α
Sridharan,␈αN.␈α
S.,␈αet.al.,␈α
Applications␈αof␈α
Artificial␈αIntelligence␈α
for␈αChemical␈α
Inference
-␈α
XII,␈α
submitted,␈α
1973,␈α
␈↓↓J.␈α
Amer.␈α
Chem.␈α
Soc.␈↓
␈↓#
2␈↓#Brown,␈α⊂H.,␈α⊂Masinter,␈α⊃L.,␈α⊂Hjelemeland,␈α⊂L.,␈α⊂Constructive␈α⊃Graph␈α⊂Labelling␈α⊂Using␈α⊃Double␈α⊂Cosets,
submitted,␈α∩1972,␈α∪␈↓↓Discrete␈α∩Mathematics␈↓;␈α∪also,␈α∩Stanford␈α∩Computer␈α∪Science␈α∩Memo␈α∪??,␈α∩Stanford
University.
␈↓#
3␈↓#De␈αBruijn,␈αN.␈αG.,␈αGeneralization␈αof␈αPolya's␈αFundamental␈αTheorem␈αin␈α
Enumerative␈αCombinatorial
Analysis,␈α
␈↓↓Nedarl.␈α
Akad.␈α
Wentesh.␈α
Proc.␈α
Ser.␈α
A,␈α
␈↓α62␈↓,␈α
(1959),␈α
59-69
␈↓#
4␈↓#De␈α
Bruijn,␈α
"Polya's␈α
Theory␈α
of␈α
Counting,"␈α
␈↓↓Applied␈α
Combinatorial␈α
Mathematics␈↓,␈α∞E.␈α
Beckenbach
(ed.),␈α
Wiley,␈α
New␈α
York,␈α
1964,␈α
pp␈α
144-184.
␈↓#
5␈↓#see,␈α∂however,␈α⊂Perlman,␈α∂D.␈α∂M.,␈α⊂Isomorph␈α∂Rejection␈α∂on␈α⊂Power␈α∂Sets,␈α∂(unpublished),␈α⊂University␈α∂of
California␈α
San␈α
Diego.
␈↓␈↓ ε_1␈↓
x
␈↓␈↓ ¬≤␈↓αPART A: DEFINITIONS␈↓
␈↓␈↓αSYMMETRY AND ITS RELATIONSHIP TO LABELLING␈↓
␈↓Consider␈α
the␈αspecial␈α
case␈α
of␈αthe␈α
general␈αproblem:␈α
suppose␈α
all␈αof␈α
the␈α
labels␈αare␈α
distinct.␈α This␈α
means
that,␈α
for␈αexample,␈α
one␈αwishes␈α
to␈αnumber␈α
the␈α
faces␈αof␈α
a␈αcube␈α
with␈αthe␈α
numbers␈α
{1,␈α2,␈α
3,␈α4,␈α
5,␈α6},␈α
or
the␈α"nodes"␈α
(atom␈αpositions␈α
in␈αa␈αgraph)␈α
of␈αthe␈α
decalin␈αskeleton␈α
(Fig.␈α1)␈αwith␈α
numbers␈α{1,␈α
2,␈α3,␈α4,␈α
5,
6,␈α
7,␈α
8,␈α
9,␈α
10}.␈α There␈α
are␈α
n!␈α
(n␈α
factorial)␈αways␈α
of␈α
labelling␈α
where␈α
n␈αis␈α
the␈α
number␈α
of␈α
parts.␈α If␈α
the
object␈α
has␈α
no␈α
symmetry␈α
then␈αeach␈α
of␈α
these␈α
n!␈α
ways␈α
are␈αdistinct␈α
from␈α
the␈α
rest.␈α
However␈α
for␈αthe
decalin␈α⊂skeleton␈α⊃(where␈α⊂n!␈α⊃=␈α⊂10!␈α⊂=␈α⊃3,628,800␈α⊂ways)␈α⊃there␈α⊂is␈α⊂some␈α⊃symmetry.␈α⊂First␈α⊃one␈α⊂picks,
arbitrarily,␈α∞one␈α∞of␈α∞the␈α∞numberings␈α∂as␈α∞a␈α∞point␈α∞of␈α∞reference␈α∞(Fig␈α∂2a).␈α∞ Some␈α∞of␈α∞the␈α∞10!␈α∂ways␈α∞are
different␈α
(Fig␈α
2b);␈α
some␈α
of␈α
them␈α
are␈α
essentially␈α
the␈α
same␈α
(Fig␈α
2c).
␈↓Fig. 1␈↓α␈↓ εi→→ Figure 1, The Decalin Skeleton ←←←←←␈↓
␈↓Fig. 2␈↓α␈↓ β`→→ Figure 2, Three of the 10! numberings of the Decalin Skeleton. ←←←←←␈↓
␈↓Intuitively,␈αFigs␈α2a␈αand␈α
2c␈αare␈αequivalent␈αbecause␈αone␈α
could␈αtake␈α2a,␈αflip␈α
it␈αover␈αthe␈α3-8␈αaxis,␈α
and
get␈α
2c.␈α There␈α
is␈α
another␈αway␈α
of␈αdetermining␈α
the␈α
"sameness"␈αof␈α
such␈α
numberings␈αwhich␈α
is␈αeasier␈α
in
the␈α
more␈α
complicated␈α
cases␈α
and␈α
is␈α
in␈α
general␈α
more␈α
suited␈α
to␈α
computer␈α
application:
␈↓ α(␈↓αDEFINITION:␈↓␈α∪two␈α∪numberings␈α∪of␈α∪the␈α∪nodes␈α∪of␈α∪a␈α∪graph␈α∪are␈α∪␈↓↓equivalent␈↓␈α∪if␈α∪the
␈↓ α(connection␈α∩tables␈α∩with␈α∩the␈α∩respective␈α∩numberings␈α∩are␈α∩identical␈α∩when␈α∩the␈α∩node
␈↓ α(numbers␈αare␈αwritten␈αin␈α
ascending␈αorder␈αand␈αeach␈α
"connected␈αto"␈αlist␈αis␈αin␈α
ascending
␈↓ α(order.
␈↓Table␈α∂I␈α∞contains␈α∂the␈α∂respective␈α∞"connection␈α∂tables"␈α∞of␈α∂the␈α∂structures␈α∞in␈α∂Fig.␈α∞2.␈α∂ Note␈α∂that␈α∞the
connection␈α
table␈α
for␈α
Fig␈α
2c␈α
is␈α
identical␈α
to␈α
that␈α
of␈α
Fig␈α
2a;␈α
that␈α
of␈α
Fig␈α
2b␈α
is␈α
different.
␈↓ ε_2␈↓
x
␈↓β__________________________________________________________________
Table I.
Structure (2a) Structure (2b) Structure (2c)
node|connected | node|connected | node|connected
| to | | to | | to
| |
1 2,1O | 1 8,9 | 1 2,1O
2 1,3 | 2 7,3 | 2 1,3
3 2,4,8 | 3 2,6 | 3 2,4,8
␈↓β 4 3,5 | 4 6,8,1O | 4 3,5
5 4,6 | 5 9,1O | 5 4,6
6 5,7 | 6 3,4 | 6 5,7
7 6,8 | 7 2,8 | 7 6,8
8 3,7,9 | 8 1,4,7 | 8 3,7,9
9 8,1O | 9 1,5 | 9 8,1O
1O 1,9 | 1O 4,5 | 1O 1,9
____________________________________________________________________
␈↓This␈αdefinition␈αmeans,␈α
among␈αother␈αthings,␈α
that␈αproperties␈αsuch␈αas␈α
valency␈αare␈αpreserved:␈α
If␈αtwo
numberings␈α⊂are␈α∂equivalent␈α⊂and␈α∂in␈α⊂the␈α∂first,␈α⊂node␈α∂1␈α⊂is␈α∂trivalent,␈α⊂then␈α∂in␈α⊂the␈α∂second,␈α⊂node␈α⊂1␈α∂is
trivalent.␈α⊂If␈α⊂there␈α∂are␈α⊂other␈α⊂properties␈α∂of␈α⊂the␈α⊂nodes␈α∂(they␈α⊂are␈α⊂already␈α∂colored␈α⊂or␈α⊂labelled,␈α∂for
example),␈α
then␈α
this␈α
definition␈α
can␈α
be␈α
extened␈α
to␈α
include␈α
the␈α
preserving␈α
of␈α
those␈α
properties.
For␈α
example,␈α
suppose␈α
there␈α
are␈α
atom␈α
names␈α
associated␈α
with␈α
(some␈α
of)␈α
the␈α
nodes␈α
of␈α
the␈α
graph.␈α
Then
one␈αcan␈αdefine␈αequivalent␈αnumberings␈αto␈αbe␈αthose␈αwhich␈αnot␈αonly␈αhave␈αidentical␈α
connection␈αtables,
but␈αalso␈αthe␈αsame␈αatom␈αnames␈αfor␈αthe␈αcorresponding␈αnodes.␈α Then␈αFig␈α3a␈αwould␈αstill␈αbe␈α
equivalent
to␈αFig␈α3c␈α
but␈αno␈αlonger␈αto␈α
Fig␈α3b␈αsince,␈αalthough␈α
the␈αconnection␈αtables␈αof␈α
3a␈αand␈α3b␈αare␈α
identical,
node␈α
1␈α
in␈α
Fig␈α
3a␈α
is␈α
labelled␈α
with␈α
an␈α
"N"␈α
while␈α
in␈α
3b␈α
it␈α
unlabelled.
Fig. 3␈↓α␈↓ ∧¬→→ Figure 3, Partially labelled graphs reduce the equivalencies. ←←←←←␈↓
␈↓ ε_3␈↓
x
␈↓␈↓αPERMUTATIONS AND PERMUTATION GROUPS␈↓
␈↓Given␈α∪a␈α∪numbering␈α∪of␈α∪a␈α∪structure,␈α∪one␈α∪can␈α∪use␈α∪a␈α∪condensed␈α∪notation␈α∪to␈α∪write␈α∪down␈α∪other
numberings␈α
in␈α∞terms␈α
of␈α
the␈α∞first␈α
(Table␈α
II).␈α∞In␈α
the␈α
2b␈α∞case,␈α
the␈α
row␈α∞of␈α
numbers␈α
means␈α∞that,␈α
in
sequence,␈α⊃the␈α⊂node␈α⊃numbered␈α⊃1␈α⊂in␈α⊃the␈α⊂reference␈α⊃numbering␈α⊃2a␈α⊂is␈α⊃now␈α⊂numbered␈α⊃2,␈α⊃the␈α⊂node
originally␈αnumbered␈α2␈αis␈αnow␈α
numbered␈α10,␈αand␈αso␈αon.␈α All␈α
of␈αthese␈αare␈αwritten␈αdown␈αwith␈α
respect
to␈α
the␈α
original␈α
"reference"␈α
numbering␈α
of␈α
figure␈α
2a.
␈↓β_________________________________________________________________
Table II
Condensed Notation for Numberings
Figure 2a numbers: 1 2 3 4 5 6 7 8 9 10
Figure 2b numbers: 2 7 8 1 9 5 10 4 6 3
Figure 2c numbers: 5 4 3 2 1 10 9 8 7 6
_________________________________________________________________
␈↓One␈αcan␈αconceptualize␈αa␈αnumbering␈αas␈αa␈α
transformation␈αor␈αas␈αa␈αfunction:␈αThe␈αtransformation␈απ␈α
for
2c␈αis␈απ␈↓#v2␈↓#␈↓#vc␈↓#(1)=5,␈απ␈↓#v2␈↓#␈↓#vc␈↓#(2)=4,␈α
π␈↓#v2␈↓#␈↓#vc␈↓#(3)=3,␈α...␈απ␈↓#v2␈↓#␈↓#vc␈↓#(10)=6.␈α These␈α
transformations␈αare␈α␈↓↓permutations␈↓:␈αone␈α
to
one␈α
mappings␈αfrom␈α
the␈αintegers␈α
{1,2,...,n}␈αto␈α
themselves.␈α The␈α
transformation␈αfor␈α
the␈α"reference"
numbering␈α⊗is␈α∃the␈α⊗identity␈α⊗i(x)=x.␈α∃It␈α⊗can␈α∃be␈α⊗shown␈α⊗that␈α∃whatever␈α⊗the␈α∃graph,␈α⊗the␈α⊗set␈α∃of
transformations␈αsatisfying␈α
the␈α"equivalency"␈αrequirement␈α
above␈αsatisfies␈αthe␈α
property␈αof␈α
a␈αgroup.
One␈α
may␈α
then␈α
say:
␈↓ α(The␈α⊂␈↓↓symmetry␈α∂group␈↓␈α⊂of␈α∂a␈α⊂graph␈α∂is␈α⊂the␈α∂set␈α⊂of␈α∂all␈α⊂transformations␈α⊂which␈α∂yield
␈↓ α(identical␈α∂connection␈α∂tables.␈α∂ (If␈α∂there␈α⊂are␈α∂other␈α∂properties␈α∂to␈α∂be␈α⊂considered,␈α∂one
␈↓ α(may␈αinclude␈αthem␈αas␈αpart␈αof␈αthe␈αconnection␈αtable).␈α For␈αthe␈αdecalin␈αskeleton␈αthere
␈↓ α(are␈α
4␈α
permutations␈α
in␈α
the␈α
symmetry␈α
group.
␈↓ ε_4␈↓
x
␈↓β_____________________________________________________________________
Table III
The Symmetry Group
of the Decalin Skeleton
π␈↓#vi␈↓# 1 2 3 4 5 6 7 8 9 10
π␈↓#vv␈↓# 5 4 3 2 1 10 9 8 7 6
π␈↓#vh␈↓# 10 9 8 7 6 5 4 3 2 1
π␈↓#v180␈↓# 6 7 8 9 10 1 2 3 4 5
␈↓β____________________________________________________________________
␈↓These␈α∞correspond␈α∞directly␈α∞to␈α∂the␈α∞intuitive␈α∞geometric␈α∞symmetries␈α∞π␈↓#vi␈↓#=identity,␈α∂π␈↓#vh␈↓#=reflection␈α∞about
horizontal␈α⊂axis,␈α⊂π␈↓#vv␈↓#=reflection␈α⊂about␈α⊂vertical␈α⊂axis,␈α⊂π␈↓#v180␈↓#␈α∂=␈α⊂rotation␈α⊂180␈α⊂degrees.␈α⊂ It␈α⊂is␈α⊂not␈α∂too
difficult␈α∪for␈α∪a␈α∩computer␈α∪program␈α∪to␈α∩figure␈α∪out␈α∪the␈α∩symmetry␈α∪group␈α∪of␈α∩a␈α∪graph␈α∪given␈α∩its
connection␈α
table␈↓#
6␈↓#.
␈↓This␈αdefinition␈αdeals␈αwith␈αthe␈αsymmetry␈αof␈αthe␈α␈↓↓nodes␈↓␈αof␈αa␈αgraph.␈α In␈αmany␈αcases,␈αone␈αmight␈αwish
to␈α∞label␈α∞the␈α∞␈↓↓edges␈↓␈α∞(interconnecting␈α∞lines)␈α∞of␈α∞a␈α∞graph.␈α∞ In␈α∞this␈α∞case,␈α∞the␈α∞symmetry␈α∞group␈α∞on␈α
the
edges␈α∂rather␈α∞than␈α∂on␈α∂the␈α∞nodes␈α∂is␈α∂required.␈α∞ It␈α∂is␈α∂very␈α∞easy␈α∂to␈α∂calculate␈α∞this␈α∂group␈α∂from␈α∞the
group␈α∂on␈α⊂the␈α∂nodes.␈α⊂Let␈α∂the␈α⊂numbering␈α∂for␈α⊂each␈α∂edge␈α⊂in␈α∂the␈α⊂graph␈α∂be␈α⊂the␈α∂unordered␈α⊂pair␈α∂of
numbers␈α∂of␈α⊂the␈α∂nodes␈α⊂that␈α∂form␈α⊂the␈α∂end-points.␈α⊂ Then␈α∂the␈α⊂corresponding␈α∂permutations␈α⊂can␈α∂be
obtained␈α
as␈α
follows:
π␈↓#vi␈↓#{n␈↓#v1␈↓#,n␈↓#v2␈↓#}={π␈↓#vi␈↓#(n␈↓#v1␈↓#),π␈↓#vi␈↓#(n␈↓#v2␈↓#)}
␈↓This␈α
is␈α
most␈α
easily␈α
shown␈α
by␈α
way␈α
of␈α
an␈α
example.␈α
(Table␈α
IV).
------------------
␈↓#
6␈↓#this␈α
needs␈α
to␈α
be␈α
described
␈↓ ε_5␈↓
x
␈↓β__________________________________________________________________
Table IV
Permutation Group of Decalin Skeleton acting on the edges
π␈↓#vi␈↓# 1-2 2-3 3-8 3-4 4-5 5-6 6-7 7-8 8-9 9-10 1-10
π␈↓#vv␈↓# 4-5 3-4 3-8 2-3 1-2 1-10 9-10 8-9 7-8 6-7 5-6
␈↓β π␈↓#vh␈↓# 9-10 8-9 3-8 7-8 6-7 5-6 4-5 3-4 2-3 1-2 1-10
π␈↓#v180␈↓# 6-7 7-8 3-8 8-9 9-10 1-10 1-2 2-3 3-4 4-5 5-6
____________________________________________________________________
␈↓Finding␈α
the␈αgroup␈α
of␈αan␈α
object␈αis␈α
a␈αspecial␈α
kind␈αof␈α
labelling␈αproblem.␈α
Given␈αone␈α
way␈αof␈α
numbering
(labelling␈α∪with␈α∪distinct␈α∪labels)␈α∪the␈α∪parts␈α∪of␈α∪the␈α∪object,␈α∪one␈α∪finds␈α∪all␈α∪other␈α∪ways␈α∪which␈α∩are
equivalent.␈α
The␈αlabelling␈α
problem␈α
attacked␈αin␈α
this␈αpaper␈α
is␈α
the␈αconverse:␈α
to␈α
find␈αa␈α
maximal␈αlist␈α
of
labellings,␈αnone␈α
of␈αwhich␈α
are␈αequivalent␈α
to␈αeach␈α
other.␈α In␈α
general␈αthe␈α
set␈αof␈α
all␈αposssible␈α
labellings
can␈α
be␈α
split␈α
into␈α
subsets,␈α
such␈α
that:
␈↓ α(1)␈α
If␈α
two␈α
labellings␈α
are␈α
in␈α
different␈α
subsets,␈α
they␈α
are␈α
not␈α
equivalent.
␈↓ α(2)␈α
If␈α
two␈α
labellings␈α
are␈α
in␈α
the␈α
same␈α
subset,␈α
they␈α
are␈α
equivalent.
␈↓These␈α
subsets␈α
are␈α
called␈α
␈↓↓equivalence␈α
classes␈↓␈α
of␈α
labellings.
The␈α
relationship␈α
of␈α
finding␈α
the␈α
group,␈α
and␈α
of␈α
finding␈α
labellings␈α
where␈α
all␈α
the␈α
labels␈α∞are␈α
distinct,
can␈α
be␈αviewed␈α
as␈α
follows:␈αTake␈α
the␈αn!␈α
possible␈α
labellings␈αand␈α
lay␈αthem␈α
out␈α
in␈αa␈α
matrix:␈α
each␈αrow
will␈αcontain␈αone␈αequivalence␈αclass.␈α(It␈αcan␈αbe␈αshown␈αthat␈αin␈αthis␈αspecial␈αcases␈αwhere␈αthe␈αlabels␈αare
distinct,␈αall␈αof␈αthe␈αequivalence␈αclasses␈αare␈αof␈αthe␈αsame␈αsize).␈α To␈αfind␈αthe␈αgroup,␈αone␈αneeds␈αto␈αfind
a␈α
row.␈α
To␈α
find␈α
the␈α
labellings,␈α
one␈α
needs␈α
to␈α
pick␈α
one␈α
element␈α
from␈α
each␈α
row.
Fig. 4␈↓α␈↓ ∧[→→ Figure 4, Equivalence classes, Groups, and Labellings ←←←←←␈↓
␈↓ ε_6␈↓
x
␈↓␈↓ βr␈↓αPART B: SOLUTION TO THE LABELLING PROBLEM␈↓
␈↓␈↓αA Naive Method␈↓
␈↓An␈αobvious␈αmethod␈αto␈αfind␈αthe␈αdistinct␈αlabellings␈αwould␈αbe␈αto␈αgenerate␈αall␈αn!␈αof␈αthe␈αpossible␈αones,
and␈α⊂for␈α⊂each␈α⊂one␈α⊃to␈α⊂check␈α⊂if␈α⊂an␈α⊂equivalent␈α⊃one␈α⊂was␈α⊂previously␈α⊂generated.␈α⊃Unfortunately,␈α⊂this
method␈αtakes␈αan␈αexhorbitant␈αamount␈αof␈αcomputation␈α(proportional␈αto␈αn!␈αsquared).␈α Below␈αa␈αmethod
is␈αdiscussed␈α
which␈αtakes␈αan␈α
amount␈αof␈αtime␈α
roughly␈αproportional␈αto␈α
the␈αnumber␈αof␈α
solutions␈α(i.e.
the␈α⊂number␈α⊂of␈α∂equivalence␈α⊂classes␈α⊂of␈α∂labellings)␈α⊂and␈α⊂requires␈α∂only␈α⊂knowledge␈α⊂of␈α⊂the␈α∂symmetry
group.␈α∞Thus␈α∞it␈α∞is␈α∞useful␈α∞for␈α∞labelling␈α∂objects␈α∞using␈α∞their␈α∞geometric␈α∞symmetry␈α∞␈↓#
1␈↓#␈α∞as␈α∞well␈α∂as␈α∞the
topological␈α
symmetry␈α
defined␈α
above.
␈↓αA Better Method␈↓
␈↓␈↓αSpecial␈αcase:␈αdistinguish␈α1␈αnode.␈↓␈αFirst␈αconsider␈αthe␈αspecial␈αcase␈αwhere␈αthere␈αare␈αonly␈αtwo␈αtypes␈αof
labels␈αsuch␈αthat␈αthere␈αis␈αone␈αlabel␈αof␈αthe␈αfirst␈αtype␈αand␈αall␈αthe␈αrest␈αof␈αthe␈αsecond.␈α(E.g.,␈αcolor␈αone
red,␈α
and␈α
the␈α
rest␈α
green,␈α
or␈α
label␈α
one␈α
N␈α
and␈α
the␈α
rest␈α
C.)␈α
Intuitively,␈α
for␈α
the␈α
decalin␈α
skeleton,␈αone␈α
can
see␈αthat␈α
there␈αare␈α
three␈αclasses␈α
of␈αsymmetric␈α
nodes,␈αor␈α
␈↓↓orbits␈↓,␈αmarked␈α
with␈α"⊗",␈α
"+"␈αand␈α
"&"␈αin␈α
Fig.
5,␈α
and␈α
that␈α
each␈α
distinct␈α
labelling␈α
corresponds␈α
to␈α
selecting␈α
one␈α
node␈α
from␈α
each␈α
type␈α
(see␈α
Fig␈α
6.)
␈↓␈↓∧(CHECK␈α
TO␈α
MAKE␈α
SURE␈α
THAT␈α
SYMBOLS␈α
ARE␈α
APPROPRIATE␈α
TO␈α
FIGURE)␈↓
Fig. 5␈↓α␈↓ ¬}→→ Figure 5, Orbits in the Decalin Skeleton ←←←←←␈↓
␈↓Fig. 6␈↓α␈↓ ∧+→→ Figure 6, Three Labellings of Decalin with 1 N and 9 C's. ←←←←←␈↓
␈↓Thus␈α
there␈α∞are␈α
three␈α
distinct␈α∞labellings␈α
(the␈α∞ten␈α
possible␈α
labellings␈α∞split␈α
into␈α∞three␈α
equivalalence
classes).
␈↓αComputing␈αorbits.␈↓␈αIn␈αgeneral,␈αthe␈αparts␈αof␈αa␈αsymmetry␈αobject␈αsplit␈αinto␈αdifferent␈αorbits␈α(sometimes
there␈α
is␈α
only␈α
one␈α
type,␈α
as␈α∞in␈α
the␈α
faces␈α
of␈α
a␈α
cube,␈α∞or␈α
the␈α
nodes␈α
of␈α
the␈α
cyclohexane␈α∞skeleton).␈α
To
label␈αthe␈αparts␈α
of␈αan␈αobject␈αsuch␈α
that␈αone␈αis␈α
distinguished,␈αit␈αis␈αnecessary␈α
only␈αto␈αfind␈α
the␈αorbits
␈↓ ε_7␈↓
x
and␈αthen,␈αfor␈α
each␈αtype,␈αpick␈α
one␈αof␈αthe␈α
parts␈αin␈αthat␈α
type␈αarbitrarily.␈α Note␈α
that␈αif␈αthe␈αobject␈α
has
␈↓no␈α
symmetry␈α
each␈α
type␈α
has␈α
exactly␈α
one␈α
part␈α
in␈α
it.
It␈αis␈αvery␈αsimple␈αto␈αfind␈αthe␈αdifferent␈αtypes␈αfrom␈αthe␈αtable␈αof␈αthe␈αsymmetry␈αgroup:␈αif␈α
one␈αwrites
out␈αthe␈αgroup,␈αas␈αin␈αTable␈αIII,␈αwith␈αeach␈αpermutation␈αas␈αa␈αrow,␈αthen␈αthe␈αnumbers␈αin␈αeach␈αcolumn,
taken␈α
as␈α
a␈α
set,␈α
form␈α
an␈α
orbit.␈α
The␈α
orbits␈α
of␈α
the␈α
group␈α
in␈α
Table␈α
III␈α
are:␈α
{1,5,6,10},␈α
{2,4,7,9},␈α
{3,8}.
After␈α
finding␈α
the␈α
set␈α
of␈α
orbits,␈α
one␈αthen␈α
can␈α
do␈α
the␈α
special␈α
labelling␈α
described␈αabove␈α
(distinguishing
only␈α∂one␈α∂node):␈α∞the␈α∂number␈α∂of␈α∂distinct␈α∞labellings␈α∂is␈α∂the␈α∂number␈α∞of␈α∂orbits.␈α∂Each␈α∂corresponds␈α∞to
selecting␈α⊃an␈α⊂element␈α⊃from␈α⊂a␈α⊃corresponding␈α⊂orbit␈α⊃and␈α⊂labelling␈α⊃it.␈α⊂ For␈α⊃a␈α⊂convention,␈α⊃the␈α⊂first
element␈α∞of␈α∞each␈α∞orbit␈α∞should␈α∞be␈α∞chosen␈α∂(i.e.␈α∞the␈α∞one␈α∞with␈α∞the␈α∞smallest␈α∞number␈α∞in␈α∂the␈α∞reference
numbering).
␈↓αThe␈αreduced␈αsymmetry␈α
group.␈↓␈αOnce␈αa␈αgroup␈α
has␈αbeen␈αcalculated␈αfor␈α
a␈αstructure,␈αmany␈α
times␈αone
wants␈αto␈αknow␈α
what␈αthe␈αgroup␈α
is␈αafter␈αsome␈αlabels␈α
have␈αbeen␈αattached.␈α
The␈αgroup␈αof␈α
a␈αlabelled
structure␈α
is␈α
always␈α
a␈α
␈↓↓subset␈↓␈α
of␈α
the␈α
group␈α
of␈α
the␈α
unlabelled␈α
structure.␈α
Thus␈α
one␈α
needs␈α
to␈α
know
which␈α∞permutations␈α∞in␈α∞the␈α∞group␈α∞must␈α∞be␈α∞thrown␈α∞out.␈α∞To␈α∞do␈α∞this,␈α∞write␈α∞the␈α∞"labels"␈α
associated
with␈α
each␈α
node␈α
next␈α
to␈α
the␈αnode␈α
number␈α
in␈α
the␈α
permutation␈α
table␈αas␈α
in␈α
Table␈α
II.␈α
If␈α
in␈αany␈α
column,
there␈α⊃is␈α⊃an␈α⊃element␈α⊃which␈α⊃has␈α⊃a␈α⊃different␈α⊃label␈α⊃than␈α⊃the␈α⊃label␈α⊃in␈α⊃the␈α⊃"reference"␈α⊃numbering
(identity␈αpermutation),␈αthen␈αthat␈αrow␈αcan␈αbe␈αdiscarded.␈α
That␈αis,␈αa␈αpermutation␈αis␈αvalid␈αif␈αand␈α
only
if␈αthe␈αstructure␈α"looks␈αthe␈αsame"␈αafter␈αits␈αnode␈αnumbers␈αare␈αpermuted.␈α Only␈αpermutations␈αin␈αthe
original␈α⊂group␈α⊂can␈α⊂possibly␈α⊂yield␈α⊂structures␈α⊂which␈α⊂do␈α⊂look␈α⊂the␈α⊂same;␈α⊂however,␈α⊂because␈α⊂of␈α∂the
labelling,␈α
some␈α
of␈α
these␈α
permutations␈α
may␈α
yield␈α
disimilar␈α
structures.␈α
These␈α
permutations␈α
are␈αthe
ones␈α
that␈α
must␈α
be␈α
discarded.
␈↓ ε_8␈↓
x
␈↓αReduction␈αtechniques.␈↓␈αIn␈αthe␈αgeneral␈αlabelling␈α
problem,␈αthere␈αare␈αtwo␈αimportant␈αtechniques␈αused␈α
to
␈↓reduce␈α∞the␈α
problem.␈α∞ The␈α
first␈α∞is␈α
called␈α∞␈↓↓label␈α
recursion␈↓␈α∞␈↓#
7␈↓#␈α
and␈α∞the␈α
second␈α∞␈↓↓orbit␈α∞recursion␈↓.␈α
The
␈↓idea␈αbehind␈αlabel␈α
recursion␈αis␈αthat␈α
one␈αcan␈αdo␈α
one␈αlabel␈αat␈α
a␈αtime.␈α The␈α
idea␈αbehind␈αorbit␈α
recursion
is␈α
that␈α
one␈α
can␈α
label␈α
one␈α
orbit␈α
at␈α
a␈α
time.␈α
These␈α
reductions␈α
are␈α
discussed␈α
in␈α
detail␈α
below.
␈↓αLABEL RECURSION␈↓
␈↓If␈α
one␈αis␈α
given␈α
many␈α(more␈α
than␈α2)␈α
kinds␈α
of␈αlabels,␈α
say␈α
n␈↓#v1␈↓#␈αof␈α
type␈α1,␈α
n␈↓#v2␈↓#␈α
of␈αtype␈α
2,␈α
...␈αn␈↓#vk␈↓#␈α
of␈αtype␈α
k,
one␈α∀may␈α∪proceed␈α∀as␈α∀follows:␈α∪Solve␈α∀the␈α∀labelling␈α∪problem␈α∀for␈α∪n␈↓#v1␈↓#␈α∀of␈α∀one␈α∪type␈α∀of␈α∀label␈α∪and
n␈↓#v2␈↓#+n␈↓#v3␈↓#+...+n␈↓#vk␈↓#␈αof␈αanother␈αtype.␈α(Call␈αthe␈αsecond␈αtype␈αof␈αlabel␈α"blank").␈α The␈αresult␈αwill␈αbe␈αa␈αlist␈α
of
partially␈α
labelled␈α∞objects␈α
(along␈α∞with␈α
their␈α∞reduced␈α
symmetry␈α∞groups).␈α
Take␈α∞each␈α
of␈α∞the␈α
results
and␈α
label␈α
the␈α"blank"␈α
parts␈α
with␈αn␈↓#v2␈↓#␈α
labels␈α
of␈αone␈α
kind,␈α
n␈↓#v3␈↓#␈αof␈α
another,␈α
...␈α,n␈↓#vk␈↓#␈α
of␈α
another.␈α
It␈αhas
been␈αproved␈α␈↓#
2␈↓#␈αthat␈αthe␈αresults␈αwill␈αbe␈αa␈αlist␈αof␈αall␈αdistinct␈αsolutions␈αto␈αthe␈αoriginal␈αproblem.␈α For
example,␈α
to␈α
label␈α
the␈αdecalin␈α
skeleton␈α
with␈α
1␈α
label␈α"N",␈α
1␈α
label␈α
"S"␈α
and␈α8␈α
labels␈α
"C",␈α
one␈αfirst␈α
labels
with␈α1␈α"N"␈αand␈α9␈α"blanks"␈αobtaining␈αthe␈α3␈αresults␈αin␈αfigure␈α7a.␈α (Fig␈α7a1,␈α7a2,␈α7a3).␈α There␈αare
now␈α∪3␈α∀new␈α∪problems:␈α∪to␈α∀label␈α∪the␈α∪"blanks"␈α∀of␈α∪Figs.␈α∪7a1-3␈α∀under␈α∪their␈α∀respective␈α∪reduced
symmetry,␈αwith␈α
1␈α"S"␈α
and␈α8␈α
"C"'s.␈α In␈α
Figs␈α7a1␈α
and␈α7a2,␈α
there␈αis␈α
no␈αsymmetry␈α
left␈αand␈α
so␈αeach␈α
of
the␈α"blanks"␈α
has␈αits␈αown␈α
orbit;␈αthus␈α
there␈αare␈α9␈α
distinct␈αlabellings␈α
apiece.␈α In␈αFig.␈α
7a3␈αthere␈αare␈α
5
orbits␈α
under␈α
the␈α
reduced␈α
symmetry,␈α
and␈α
thus␈α
there␈α
are␈α
5␈α
additional␈α
possiblities␈α
(Fig␈α
7b).
␈↓Fig. 7␈↓α␈↓ ¬:→→ Figure 7, Labellings with 1 N, 1 S, and 8 C's. ←←←←←␈↓
␈↓␈↓αORBIT RECURSION␈↓
␈↓There␈α
are␈α
3␈α
cases␈α
in␈α
the␈α
problem␈α
of␈α
1␈α
N,␈α
9␈α
C␈α
on␈α
the␈α
decalin␈α
skeleton.
(case 1) 1 N goes to orbit {1,5,6,10}.
(case 2) 1 N goes to orbit {2,4,7,9},
(case 3) 1 N goes to orbit {3,8}.
------------------
␈↓#
7␈↓#A␈α␈↓↓recursive␈↓␈αtechnique␈αis␈αone␈αwhich␈αis␈αdefined␈αin␈αterms␈αof␈αitself.␈αIt␈αis␈αonly␈αnecessary␈αthat␈αat␈αeach
step␈αthe␈αproblem␈αis␈αreduced,␈αand␈αthat␈αa␈αterminating␈αcondition␈αis␈αeventually␈αmet.␈αHere␈αthe␈αgeneral
solution␈α
of␈α
the␈α
labelling␈α
problem␈α
is␈αdescribed␈α
in␈α
terms␈α
of␈α
less␈α
complicated␈α
labellings.␈αSeveral␈α
special
cases␈α
(terminating␈α
conditions)␈α
are␈α
also␈α
defined.
␈↓ ε_9␈↓
x
␈↓There␈αis␈αonly␈αone␈αpossibility␈αin␈αeach␈αof␈αthese␈αcases.␈α Suppose␈αthere␈αwere␈α3␈αN's.␈αThen␈αthere␈αwould
␈↓be␈α
9␈α
cases.␈α
(Table␈α
IV).
␈↓β_________________________________________________________________
Table IV.
(3 N's on a Decalin)
# N's going to
case orbit orbit orbit
number {1,5,6,10} {2,4,7,9} {3,8}
1 3 0 0
2 2 1 0
3 2 0 1
4 1 2 0
5 1 1 1
6 1 0 2
7 0 3 0
8 0 2 1
9 0 1 2
_________________________________________________________________
␈↓In␈α
some␈αof␈α
these␈αcases␈α
there␈αare␈α
more␈αthan␈α
one␈αpossibility␈α
(cases␈α2,␈α
3,␈α4,␈α
5␈αand␈α
8).␈α However,␈α
every
labelling␈α∂fits␈α∂into␈α⊂one␈α∂of␈α∂these␈α⊂cases,␈α∂and␈α∂labellings␈α∂from␈α⊂different␈α∂cases␈α∂cannot␈α⊂be␈α∂equivalent.
Thus,␈αeach␈αof␈αthese␈αcases␈αcan␈αbe␈αdone␈αindependently,␈αand␈αthe␈αresults␈αcollected␈αtogether.␈αTo␈αdo␈αany
one␈αof␈αthe␈αcases,␈αthe␈αlabellings␈αof␈αthe␈αorbits␈αcan␈αbe␈αdone␈αsequentially.␈αThat␈αis,␈αthe␈αrows␈αof␈αTable
IV␈α
can␈α
be␈α
done␈α
independently,␈α
and␈α
for␈α
each␈α
row␈α
the␈α
columns␈α
can␈α
be␈α
done␈α
from␈α
left␈α
to␈α
right.
Considering␈αcase␈α5,␈αone␈αcan␈α
first␈αlabel␈αone␈αof␈α{1,5,6,10}␈αwith␈α
one␈αN,␈α(and␈αthe␈αrest␈α"blanks").␈α
Since
{1,5,6,10}␈α
is␈α
an␈α
orbit,␈α
one␈α
can␈α
chose␈α
node␈α
1;␈α
the␈α
result␈α
is␈α
Fig␈α
8.
Fig. 8␈↓α␈↓ εQ→→ Figure 8, 1 N to orbit {1,5,6,10} ←←←←←␈↓
␈↓Second,␈α∞one␈α
labels␈α∞{2,4,7,9}␈α
with␈α∞1␈α
N␈α∞(and␈α
3␈α∞blanks).␈α
Note␈α∞that␈α
{2,4,7,9}␈α∞is␈α
no␈α∞longer␈α∞an␈α
orbit
under␈αthe␈α
reduced␈αgroup.␈α Stick␈α
to␈αthe␈αoriginal␈α
plan--␈αit␈αis␈α
necessary␈αto␈αfind␈α
␈↓↓new␈↓␈αorbits␈αunder␈α
the
␈↓ ε⊂10␈↓
x
reduced␈αgroup␈αto␈α
label␈α{2,4,7,9}.␈α Since␈αthere␈α
is␈αno␈αsymmetry␈αleft,␈α
each␈αof␈α{2,4,7,9}␈αfalls␈α
into␈αits
␈↓own␈α
orbit.␈α
The␈α
"special␈α
case"␈α
described␈α
below␈α
under␈α"No␈α
Group"␈α
can␈α
be␈α
used␈α
directly␈α
to␈α
find␈αthe␈α
4
solutions␈α
(Fig␈α
9).
Fig. 9␈↓α␈↓ εZ→→ Figure 9, Second step of case 5 ←←←←←␈↓
␈↓Then,␈α
for␈αeach␈α
of␈α
these␈αsolutions,␈α
{3,8}␈αmust␈α
be␈α
labelled␈αwith␈α
1␈αN␈α
(and␈α
1␈αblank).␈α
The␈αfinal␈α
result
is␈α
8␈α
possibilities␈α
for␈α
case␈α
5,␈α
none␈α
of␈α
which␈α
has␈α
any␈α
remaining␈α
symmetry.
␈↓αSPECIAL CASES␈↓
␈↓There␈α⊃are␈α⊃several␈α∩special␈α⊃cases␈α⊃of␈α⊃labellings␈α∩in␈α⊃which␈α⊃the␈α⊃problem␈α∩can␈α⊃be␈α⊃reduced␈α∩or␈α⊃solved
immediately.␈α
Although␈α
these␈α
special␈α
cases␈α
may␈α
be␈α
amenable␈α
to␈α
the␈α
more␈α
general␈α∞algorithm,␈α
their
solution␈α
is␈α
computationally␈α
simpler.
␈↓␈↓αOnly␈α
one␈α
type␈α∞of␈α
label.␈↓␈α
If␈α∞the␈α
number␈α
of␈α∞labels␈α
(of␈α
a␈α
given␈α∞type)␈α
is␈α
the␈α∞same␈α
as␈α
the␈α∞number␈α
of
objects,␈α
then␈α∞there␈α
is␈α∞exactly␈α
one␈α∞way␈α
of␈α∞doing␈α
the␈α∞labelling.␈α
This␈α∞check␈α
for␈α∞this␈α
special␈α∞case␈α
is
necessary,␈αsince␈αin␈α
orbit␈αrecursion,␈αoften␈αthe␈α
sub-problem␈αis␈αof␈αthis␈α
form;␈αn␈↓#v1␈↓#=n,␈αand␈αn␈↓#v2␈↓#=0␈α
or␈αvice
versa.
␈↓αOnly␈αone␈αof␈αa␈αgiven␈αlabel.␈↓␈αAlready␈αmentioned␈αwas␈αthe␈αcase␈αwhere␈αthere␈αwas␈αone␈αlabel␈αof␈αone␈αkind
and␈α
n-1␈α
of␈α
the␈α∞other;␈α
it␈α
was␈α
only␈α∞necessary␈α
to␈α
find␈α
the␈α∞orbits,␈α
and␈α
label␈α
one␈α∞element␈α
arbitrarily
from␈α
each␈α
of␈α
the␈α
orbits.␈α∞ One␈α
might␈α
note␈α
here␈α
that␈α
the␈α∞order␈α
in␈α
which␈α
one␈α
applies␈α
the␈α∞labels␈α
in
label␈αrecursion␈α
is␈αarbitrary␈α
and␈αthus␈α
if␈αthere␈α
is␈αonly␈α
one␈αof␈α
any␈αof␈α
the␈αlabels,␈α
then␈αthis␈αspecial␈α
case
can␈α
be␈α
applied␈α
immediately.
␈↓αNo␈αgroup.␈↓␈αWhen␈αthere␈αis␈αno␈αsymmetry␈αleft␈αand␈αthere␈αare␈αtwo␈αlabel␈αtypes␈α(n␈↓#v1␈↓#␈αof␈αthe␈αfirst␈αtype,␈αn␈↓#v2␈↓#
of␈α∞the␈α∞second,␈α∞n␈↓#v1␈↓#+n␈↓#v2␈↓#=n,␈α∞the␈α∞number␈α∞of␈α∞objects␈α∞to␈α∞be␈α∞labelled),␈α∞the␈α∞labelling␈α∞reduces␈α∞to␈α∞a␈α
simple
␈↓ ε⊂11␈↓
x
combinatorial␈αproblem:␈αgiven␈αn␈αdistinct␈αobjects,␈αfind␈αall␈αways␈αof␈αselecting␈αn␈↓#v1␈↓#␈αof␈αthem.␈αThis␈αcan␈αbe
␈↓done␈α
by␈α
the␈α
following␈α
recursive␈α
algorithm:
To find all selections of k objects out of set S whose size is n:
1) if k = 0 then there is only one selection, the empty set.
2) if k > n then there are no possible selections.
3) Otherwise, pick an element x from S.
a) Find all selections of k objects out of the set S-{x}.
b) Find all selections of k-1 objects out of the set S-{x};
to each of these, add the element x.
␈↓A␈αk-subset␈α
of␈αa␈αset␈α
S␈α(a␈αk-subset␈α
is␈αa␈αsubset␈α
with␈αk␈αelements)␈α
either␈αcontains␈αan␈α
element␈αx␈αor␈α
not.
In␈αcase␈α3a,␈αone␈αfinds␈αthose␈αselections␈αwhich␈αdo␈αnot␈αcontain␈αx.␈αIn␈αcase␈α3b,␈αone␈αfinds␈αthose␈αselections
which␈αdo.␈α
However,␈αeach␈α
of␈αthese␈α
cases␈αare␈α
simpler␈αthan␈α
the␈αoriginal␈α
selection␈αproblem;␈α
the␈αsize␈α
of
the␈α
set␈αS␈α
reduces,␈αas␈α
well␈αas␈α
the␈αvalue␈α
of␈αk.␈α
The␈αterminating␈α
conditions,␈αk=0,␈α
or␈αk␈α
greater␈αthan␈α
the
size␈α
of␈α
the␈α
set␈α
S,␈α
insure␈α
that␈α
the␈α
process␈α
will␈α
halt.
␈↓αFINAL TECHNIQUE␈↓
␈↓It␈αhas␈αbeen␈αnow␈αshown␈αthat␈α
every␈αproblem␈αcan␈αbe␈αreduced␈αto␈α
cases␈αwhere␈αthere␈αare␈αonly␈αtwo␈α
types
of␈α
labels,␈αn␈↓#v1␈↓#␈α
of␈αthe␈α
first,␈αand␈α
n␈↓#v2␈↓#␈αof␈α
the␈αsecond,␈α
(n␈↓#v1␈↓#+n␈↓#v2␈↓#=n,␈αthe␈α
number␈αof␈α
nodes␈αto␈α
be␈αlabelled),␈α
both
n␈↓#v1␈↓#␈α∞and␈α∞n␈↓#v2␈↓#␈α∞>␈α∂1,␈α∞and␈α∞there␈α∞is␈α∂only␈α∞one␈α∞orbit.␈α∞No␈α∞more␈α∂simple␈α∞reductions␈α∞are␈α∞left.␈α∂ One␈α∞solution,
however,␈α⊂is␈α∂another␈α⊂trick.␈α∂ Pick␈α⊂the␈α∂first␈α⊂node␈α∂and␈α⊂label␈α∂it,␈α⊂calculating␈α∂the␈α⊂reduced␈α∂symmetry
group␈αand␈αnew␈αorbits.␈α Label␈αthe␈αrest␈αof␈αthe␈αnodes␈α(under␈αthe␈αreduced␈αgroup)␈αwith␈αn␈↓#v1␈↓#-1␈αlabels␈αof
type␈α1␈αand␈αn␈↓#v2␈↓#␈αlabels␈αof␈αtype␈α2.␈α The␈αresult␈αwill␈αcontain␈αa␈αrepresentative␈αof␈αeach␈αequivalence␈αclass
of␈αlabellings;␈αhowever,␈αif␈αn␈↓#v1␈↓#>2␈αthen␈αthere␈αmay␈αbe␈αsome␈αduplicates␈α(i.e.,␈αtwo␈αor␈αmore␈αof␈αthe␈αresults
may␈α
actually␈α
be␈α
equivalent).
␈↓ ε⊂12␈↓
x
␈↓␈↓αspecial kludges for fast programs by Larry Masinter␈↓
␈↓ (this section to be written?)
(this section to be written?)
(this section to be written?)
(this section to be written?)
(this section to be written?)
(this section to be written?)
(this section to be written?)
␈↓For␈αexample,␈αthe␈αcyclohexane␈αskeleton␈αhas␈αa␈αgroup␈αof␈αorder␈αtwelve␈α(has␈αtwelve␈αpermutations),␈αand
there␈α∞is␈α∞only␈α∞one␈α∞orbit.␈α∞ To␈α∞label␈α∞it␈α∞with␈α
three␈α∞N's,␈α∞one␈α∞labels␈α∞node␈α∞1␈α∞with␈α∞a␈α∞N,␈α∞calculates␈α
the
reduced␈αgroup␈αand␈αnew␈αorbits;␈αthen␈αfinds␈αthe␈αvarious␈αcases␈αfor␈αdistributing␈αthe␈αremaining␈αtwo␈αN's
among␈αthose␈α
orbits.␈α(Table␈α
V.)␈αThen␈α
for␈αeach␈αcase,␈α
do␈αeach␈α
orbit␈αsequentially.␈α
Cases␈α1,␈α
3,␈α4␈αand␈α
5
are␈α∞fairly␈α∞straightforward;␈α
in␈α∞case␈α∞2,␈α
first␈α∞label␈α∞{1,2}␈α
with␈α∞1␈α∞N.␈α
(Figure␈α∞9).␈α∞ Now␈α∞the␈α
group
reduces␈αeven␈αfurther,␈αand␈αone␈αgets␈αthe␈αtwo␈αresults␈αdepicted␈αin␈αFigure␈α9b.␈α Note␈αthat␈αcases␈α1␈αand
2a␈α∞are␈α∞equivalent␈α
as␈α∞well␈α∞as␈α∞2b,␈α
3,␈α∞and␈α∞5.␈α∞ What␈α
to␈α∞do?␈α∞ Fortunately,␈α∞there␈α
is␈α∞a␈α∞good␈α∞way␈α
of
throwing␈αout␈αthe␈α
impostors␈αwithout␈αhaving␈α
to␈αcheck␈αeach␈α
of␈αthe␈αresults␈α
against␈αeach␈αof␈αthe␈α
others
for␈α
equivalency.␈α
If␈α
there␈α
is␈α
a␈α
permutation␈α
π␈α
in␈α
the␈α
group,␈α
such␈α
that
π (labelled set) > labelled set
␈↓then␈αthe␈αlabelled␈α
set␈αis␈αan␈α
impostor--␈αthrow␈αthe␈α
bum␈αout.␈αFurthermore,␈α
every␈αimpostor␈αis␈α
detected
this␈α
way.␈α
All␈α
that␈α
is␈α
necessary␈α
is␈α
that␈α
when␈α
doing␈α
these␈α
"lower␈α
level"␈α
labellings,␈α
that␈α
one␈αis␈α
careful
to␈αpick␈αthe␈α"first"␈αelement␈αof␈αeach␈αorbit␈αto␈αlabel␈αand␈αthe␈α"first␈αorbit"␈αwhen␈αthere␈αare␈αa␈αchoice␈αof
orbits.
␈↓β____________________________________________________________
Table V
cases for 2 N's on
{2,3,4,5,6} of cyclohexane
case {2,6} {3,5} {4}
1 2 - -
2 1 1 -
3 1 - 1
4 - 2 -
5 - 1 1
____________________________________________________________
␈↓ ε⊂13␈↓
x
␈↓Fortunately,␈α⊂this␈α∂technique␈α⊂is␈α⊂rarely␈α∂necessary␈α⊂--␈α⊂usually␈α∂in␈α⊂the␈α⊂course␈α∂of␈α⊂a␈α⊂computation,␈α∂the
␈↓"special␈α∂cases"␈α∂catch␈α∂almost␈α∂everything.␈α∂ For␈α∂example,␈α∂to␈α∂label␈α∂the␈α∂decalin␈α∂skeleton,␈α∂it␈α⊂is␈α∂never
needed␈α
since␈α
even␈α
when␈α
one␈α
is␈α
labelling␈α
say␈α
orbit␈α
{2,4,7,9},␈α
there␈α
is␈α
either␈α
1,␈α
2,␈α
n-1␈α
or␈α
n-2␈α
labels␈α
to
be␈αattached.␈α For␈α
the␈αcyclohexane␈αskeleton,␈α
it␈αis␈αonly␈α
needed␈αif␈αthere␈α
are␈α3␈αof␈α
one␈αlabel␈αand␈α
3␈αof
another;␈α∞if␈α∞there␈α∞were␈α∞3,2␈α
and␈α∞1␈α∞of␈α∞three␈α∞respective␈α∞label␈α
types␈α∞for␈α∞example,␈α∞just␈α∞do␈α∞the␈α
single
label␈α∞first␈α
--␈α∞the␈α
group␈α∞will␈α
then␈α∞reduce␈α∞and␈α
again␈α∞this␈α
"final␈α∞technique"␈α
will␈α∞not␈α∞be␈α
necessary.
Only␈αin␈αcases␈αwhere␈αthere␈αis␈αan␈αorbit␈αwith␈αat␈αleast␈α6␈αelements␈αand␈αthere␈αare␈αat␈αleast␈α3␈αof␈αeach␈αof
the␈α
label␈α
types␈α
is␈α
this␈α
technique␈α
required.
␈↓ ∧≡␈↓αPART C: SUMMARY OF LABELLING STEPS␈↓
␈↓1)␈α
Calculate␈α
the␈α
group,␈α
if␈α
not␈α
previously␈α
calculated.
2)␈αIf␈αthere␈αare␈αmore␈αthan␈α2␈αdifferent␈αnode␈αtypes,␈αdo␈αthe␈αentire␈αlabelling␈αprocess␈αwith␈α1␈αof␈αthe
␈↓ ↓xlabel␈α⊃types,␈α∩and␈α⊃the␈α⊃rest␈α∩"blanks";␈α⊃then␈α⊃for␈α∩each␈α⊃of␈α⊃the␈α∩solutions␈α⊃obtained,␈α∩label␈α⊃the
␈↓ ↓x"blanks"␈αwith␈αthe␈αremaining␈αlabel␈αtypes␈αusing␈αthe␈αreduced␈αsymmetry␈αgroup␈αand␈αcollect␈αthe
␈↓ ↓xresults.
3)␈α
Otherwise,
␈↓ ↓xa)␈α
Find␈α
the␈α
orbits.
␈↓ ↓xb)␈α
If␈α
more␈α
than␈α
one␈α
orbit,␈α
then
␈↓ α(1)␈α⊂Find␈α⊂the␈α⊂different␈α⊂"cases"␈α⊂--␈α⊂ways␈α⊂of␈α⊂distributing␈α⊂the␈α⊂labels␈α⊂among␈α∂the
␈↓ αXorbits.
␈↓ α(2)␈α
For␈α
each␈α
case,
␈↓ αXa)␈α
Label␈α
the␈α
first␈α
orbit.
␈↓ αXb)␈α⊂Label␈α⊃the␈α⊂rest␈α⊃of␈α⊂the␈α⊃orbits␈α⊂using␈α⊃the␈α⊂reduced␈α⊃symmetry␈α⊂group
␈↓ βλobtained␈α
from␈α
a),␈α
and␈α
collect␈α
the␈α
results.
␈↓␈↓ ↓xc)␈α
Otherwise␈α
(only␈α
1␈α
orbit␈α
and␈α
2␈α
label␈α
types):
␈↓ α(1)␈αIf␈αthere␈αis␈αonly␈α
one␈αof␈αone␈αof␈αthe␈αlabel␈α
types,␈αpick␈αthe␈α"first"␈αnode␈αand␈α
label
␈↓ αXit␈α
with␈α
that␈α
label␈α
type.␈α
This␈α
is␈α
the␈α
only␈α
distinct␈α
possibility.
␈↓ α(2)␈α∞Otherwise␈α∞if␈α∞there␈α∞are␈α∞two␈α∞of␈α
one␈α∞of␈α∞the␈α∞label␈α∞types,␈α∞label␈α∞the␈α∞first␈α
node
␈↓ αXwith␈α
that␈α
label␈αtype,␈α
calculate␈α
the␈α
reduced␈αsymmetry␈α
group␈α
and␈αnew␈α
orbits,
␈↓ αXand␈α⊂from␈α⊂each␈α⊂of␈α⊂the␈α⊃new␈α⊂orbits,␈α⊂pick␈α⊂the␈α⊂"first"␈α⊂node.␈α⊃ The␈α⊂solutions
␈↓ αXconsist␈α
of␈α
those␈α
possibilities␈α
(one␈α
for␈α
each␈α
new␈α
orbit).
␈↓ ε⊂14␈↓
x
␈↓ α(3)␈α∞Otherwise,␈α∞(3␈α∂or␈α∞more␈α∞of␈α∂each␈α∞label␈α∞type,␈α∞and␈α∂one␈α∞orbit)␈α∞label␈α∂the␈α∞"first"
␈↓␈↓ αXnode,␈α∂calculate␈α∞the␈α∂reduced␈α∞symmetry␈α∂group,␈α∞label␈α∂the␈α∞rest␈α∂of␈α∂the␈α∞nodes
␈↓ αXunder␈α
the␈α∞reduced␈α
group,␈α∞and␈α
for␈α∞each␈α
of␈α∞the␈α
results,␈α∞check␈α
if␈α∞for␈α
every
␈↓ αXpermutation␈α
π␈α
in␈α
the␈α
original␈α
group␈α
that
␈↓ α( π(labelled set)≥labelled set
␈↓␈↓ αXIf␈αthis␈αis␈αnot␈α
true␈αof␈αa␈αlabelled␈α
set,␈αdiscard␈αit␈αas␈α
a␈αsolution.␈α The␈αresult␈α
is
␈↓ αXevery␈α
such␈α
labelling␈α
that␈α
satisfies␈α
this␈α
property.
␈↓␈↓ ∧\␈↓αPART D: EXTENDED EXAMPLES␈↓
␈↓␈↓αStudy of Diels-Alder Rings␈↓␈↓#
8␈↓#
␈↓The␈α⊂labelling␈α⊂algorithm␈α⊃has␈α⊂been␈α⊂used␈α⊃to␈α⊂define␈α⊂the␈α⊂scope␈α⊃and␈α⊂boundaries␈α⊂of␈α⊃the␈α⊂Diels-Alder
reaction,␈αa␈α
well-known␈αand␈α
commonly␈αused␈αsynthetic␈α
reaction.␈α The␈α
reaction␈αis␈α
shown␈αin␈αFigure␈α
10,
and␈α
is␈αdefined␈α
as␈αthe␈α
4+2␈αcycloaddition␈α
of␈α
an␈αolefin,␈α
termed␈αthe␈α
dienophile,␈αwith␈α
a␈αconjugated␈α
diene,
leading␈α
to␈α
the␈α
formation␈α
of␈α
a␈α
cyclohexene-type␈α
of␈α
ring␈α
system␈α
(Diels-Alder␈α
Ring).
␈↓Fig. 10␈↓α␈↓ εa→→ Figure 10, Diels-Alder reaction ←←←←←␈↓
␈↓The␈αmethod␈αused␈αby␈αthe␈αprogram␈αto␈αgenerate␈αDiels␈αAlder␈αRings␈αis␈αdescribed␈αbelow,␈αfollowed␈αby␈α
an
example␈α∞of␈α∂the␈α∞labelling␈α∞procedure.␈α∂ The␈α∞program␈α∞generated␈α∂1176␈α∞Diels-Alder␈α∞Rings␈α∂using␈α∞any
combination␈α
of␈α
C,N,O␈α
and␈α
S.␈α
Other␈α
atoms␈α
such␈α
as␈α
P␈α
could␈α
have␈α
been␈α
included␈α
but␈α
were␈αdeemed␈α
not
interesting␈αto␈αus.␈α A␈αcomparison␈αof␈αthe␈αcomputer␈αprint-out␈αwith␈αthe␈αRing␈αIndex␈α(which␈αcovers␈αthe
literature␈α∞through␈α
1963)␈α∞revealed␈α
that␈α∞only␈α∞224␈α
(about␈α∞19%␈α
of␈α∞1176)␈α
are␈α∞"known"␈α∞systems.␈α
A
ring␈αsystem␈αwas␈αsaid␈αto␈α
be␈αknown␈αif␈αthe␈αsame␈αsequence␈α
of␈αatoms␈αhad␈αbeen␈αreported␈α
regardless␈αof
number␈αor␈αposition␈αof␈αunsaturations.␈α The␈α
complete␈αlist␈αof␈αDiels-Alder␈αRings␈αis␈α
richly␈αsuggestive
to␈α∞the␈α∞synthetic␈α∞chemists␈α∞and␈α∞may␈α∞serve␈α∞to␈α∞increase␈α∞the␈α∞information␈α∞on␈α∞the␈α∞scope␈α∞of␈α∞the␈α
Diels-
Alder␈α
reaction.
Fig. 11␈↓α␈↓ ¬D→→ Figure 11, Diagram of Method of Generation ←←←←←␈↓
------------------
␈↓#
8␈↓#proposed␈α≤by␈α≤Jan␈α≤Simek,␈α≤Chemistry␈α≤Department,␈α≤Stanford␈α≥University.Research␈α≤Proposal
(unpublished),␈α
February,␈α
1973.
␈↓ ε⊂15␈↓
x
␈↓␈↓αMETHOD ␈↓(see Figure 11)
␈↓␈↓αStep␈α1.␈↓␈α
The␈αinitial␈αpot␈α
of␈αatoms␈αconsisted␈α
of␈αC␈↓#v6␈↓#N␈↓#v6␈↓#O␈↓#v4␈↓#S␈↓#v4␈↓#.␈α
The␈αnumber␈αof␈α
oxygens␈αand␈αsulfurs␈α
was
limited␈αto␈αfour,␈αbecause␈αno␈αDiels-Alder␈αring␈αcan␈αbe␈αmade␈αwith␈αfive␈αor␈αsix␈αbivalent␈αatoms,␈αowing␈α
to
valence␈α
restrictions.␈α A␈α
list␈α
of␈αall␈α
possible␈α76␈α
compositions␈α
of␈α6␈α
atoms␈α
was␈αproduced␈α
using␈αa␈α
purely
combinatorial␈α
procedure.
␈↓␈↓αStep␈α∞2.␈↓␈α∂Eleven␈α∞of␈α∞the␈α∂76␈α∞compositions␈α∞were␈α∂eliminated,␈α∞again␈α∞owing␈α∂to␈α∞valence␈α∂limitations.␈α∞ An
example␈α
of␈α
the␈α
eleven␈α
compositions␈α
eliminated␈α
is␈α
O␈↓#v3␈↓#S␈↓#v3␈↓#.
␈↓αStep␈α
3.␈↓␈αFor␈α
each␈αof␈α
the␈α65␈α
remaining␈αcompositions,␈α
the␈αDiels-Alder␈α
ring␈αskeleton␈α
was␈αlabelled␈α
with
the␈α
atoms,␈α
while␈α
ensuring␈α
valence␈α
constraints␈α
were␈α
satisfied.
␈↓αStep␈α
4.␈↓␈α
The␈α
results␈α
from␈α
all␈α
labelling␈α
steps␈α
were␈α
collected,␈α
without␈α
needing␈α
to␈α
check␈αfor␈α
duplicates.
The␈α
labelling␈α
algorithm␈α
guarantees␈α
that␈α
the␈α
lists␈α
were␈α
irredundant.
␈↓αExample␈αof␈α
labelling.␈↓␈αAn␈α
example␈αof␈α
a␈αvalid␈αcomposition␈α
is␈αC␈↓#v4␈↓#O␈↓#v2␈↓#.␈α
Diels-Alder␈αrings␈α
formed␈αwith
this␈α⊂composition␈α⊂can␈α⊂only␈α⊂have␈α⊂carbons␈α⊂double␈α⊂bonded␈α⊂to␈α⊂each␈α⊂other␈α⊂(Figure␈α⊂12).␈α⊃ The␈α⊂atoms
remaining␈α
to␈α
be␈α
assigned␈α
are␈α
C␈↓#v2␈↓#O␈↓#v2␈↓#␈α
and␈α
the␈α
ring␈α
positions␈α
are␈α
numbered␈α
1,2,3,4.
Fig. 12␈↓α␈↓ εB→→ Figure 12, Diels-Alder Example A ←←←←←␈↓
␈↓␈↓αVerification␈α∀by␈α∀Enumeration.␈↓␈α∃The␈α∀results␈α∀of␈α∃of␈α∀the␈α∀labelling␈α∃procedure␈α∀can␈α∀be␈α∃verified␈α∀by
combinatorial␈α⊂counting␈α⊂techniques␈α⊂␈↓#
4␈↓#␈↓#
,␈↓#␈α⊂␈↓#
3␈↓#.␈α⊂ The␈α∂following␈α⊂derivation␈α⊂follows␈α⊂closely␈α⊂from␈α⊂that␈α∂in
␈↓Liu␈↓#
9␈↓#.
␈↓βCycle Index of Group=PG = 1/2(y␈↓#
4␈↓#␈↓#+ y␈↓#
2␈↓#␈↓#)
␈↓#v1 ␈↓#v1
Pattern Inventory is 1/2 (x␈↓#
1␈↓#␈↓#+ x␈↓#
1␈↓#␈↓#)␈↓#
4␈↓#+ (x␈↓#
2␈↓#␈↓#+ x␈↓#
2␈↓#␈↓#)␈↓#
2␈↓#
␈↓#v1 ␈↓#v2 ␈↓#v1 ␈↓#v2
= 1/2 (x␈↓#
4␈↓#␈↓#+ x␈↓#
4␈↓#␈↓#+ 4x␈↓#
3␈↓#␈↓#x␈↓#v2␈↓#+ 6x␈↓#
2␈↓#␈↓#x␈↓#
2␈↓#␈↓#+4x␈↓#v1␈↓#x␈↓#
3␈↓#␈↓#)
␈↓#v1 ␈↓#v2 ␈↓#v1 ␈↓#v1 ␈↓#v1 ␈↓#v2
------------------
␈↓#
9␈↓#Liu,␈α
Introduction␈α
to␈α
Comb.␈α
Math,␈α
McGraw-Hill,␈α
1968
␈↓ ε⊂16␈↓
x
␈↓β + (x␈↓#
4␈↓#␈↓#+ x␈↓#
4␈↓#␈↓#+ 2x␈↓#
2␈↓#␈↓#x␈↓#
2␈↓#␈↓#)
␈↓#v1 ␈↓#v2 ␈↓#v1 ␈↓#v2
= 1/2 2x␈↓#
4␈↓#␈↓#+ 2x␈↓#
4␈↓#␈↓#+ 8x␈↓#
2␈↓#␈↓#x␈↓#
2␈↓#␈↓#+ 4x␈↓#
3␈↓#␈↓#x␈↓#v2␈↓#+ 4x␈↓#
3␈↓#␈↓#x␈↓#v1␈↓#
␈↓#v1 ␈↓#v2 ␈↓#v1 ␈↓#v2 ␈↓#v1 ␈↓#v2
= x␈↓#v1␈↓#␈↓#+ x␈↓#v2␈↓#␈↓# + 4 x␈↓#v1␈↓#␈↓#x␈↓#v2␈↓#␈↓# + 2x␈↓#v1␈↓#␈↓#x␈↓#v2␈↓#+ 2x␈↓#v2␈↓#␈↓#x␈↓#v1␈↓#
␈↓#
4 ␈↓#
4 ␈↓#
2 ␈↓#
2 ␈↓#
3 ␈↓#
3
showing that there are precisely these number of labellings:
labels #labellings
C C C C 1
S S S S 1
C C S S 4
C S S S 2
C C C S 2
␈↓The␈α
third␈α
entry␈α
in␈α
the␈α
table␈α
verifies␈α
our␈α
labelling␈α
with␈α
C␈↓#v2␈↓#S␈↓#v2␈↓#␈α
in␈α
four␈α
ways.
␈↓αLabellings on the Octahedral skeletal framework.␈↓
␈↓This␈α∂example␈α∞is␈α∂concerned␈α∞with␈α∂the␈α∂geometric␈α∞isomers␈α∂of␈α∞structures␈α∂with␈α∂octahedral␈α∞symmetry.
(Figure␈α
13).
␈↓Fig. 13␈↓α␈↓ ¬↑→→ Figure 13, Octahedral Skeletal Framework ←←←←←␈↓
␈↓_________________________________________________________________
Labellings on Octahedral Skeletal Framework
Group is:
i (1 2 3 4 5 6)
r␈↓#v1␈↓# (1 3 5 4 6 2)
r␈↓#v2␈↓# (1 5 6 4 2 3)
r␈↓#v3␈↓# (1 6 2 4 3 5)
v␈↓#v1␈↓# (4 5 3 1 2 6)
v␈↓#v2␈↓# (4 2 6 1 5 3)
v␈↓#v3␈↓# (4 3 2 1 6 5)
v␈↓#v4␈↓# (4 6 5 1 3 2)
Orbits: {1 4}, {2 3 5 6}.
Example with labels (A A A A B B)
Number of labels A = 4
Number of labels B = 2
Partitioning Labels into Orbits:
Case number of A's assigned to orbit:
␈↓ ε⊂17␈↓
x
# {1 4} {2 3 5 6}
␈↓ 1 2 0
2 1 1
3 0 2
Case 1. To map A A --> {1 4}
and A A B B --> {2 3 5 6}
Map A A --> {1 4} (trivial case)
New group i, r␈↓#v1␈↓#, r␈↓#v2␈↓#, r␈↓#v3␈↓#, v␈↓#v1␈↓#, v␈↓#v2␈↓#, v␈↓#v3␈↓#, v␈↓#v4␈↓#
New orbits {2 3 5 6}
To map A A B B --> {2 3 5 6}
Case 1.1. Assign A --> 2
New group i,?? ???????? fill in
New orbits {5},{3 6}
Case 1.1.1. Assign A --> 5
Remaining B B --> {3 6}
1 labelling (A A B A A B)
Case 1.1.2. Assign A --> 3
Remaining B B --> {5 6}
1 labelling (A A A A B B)
Case 2. To map A B --> {1 4}
and A A A B --> {2 3 5 6}
Assign A --> 1 and B --> 4
New group i, r␈↓#v1␈↓#, r␈↓#v2␈↓#, r␈↓#v3␈↓#
New orbits {2 3 5 6}
To map A A A B --> {2 3 5 6}
Case 2.1. Assign B --> 2
To map A A A --> {3 5 6}
1 labelling (A B A B A A)
Case 3. To map B B --> {1 4}
and A A A A --> {2 3 5 6}
Assign B --> and B --> 4
New group i, r␈↓#v1␈↓#, r␈↓#v2␈↓#, r␈↓#v3␈↓#, v␈↓#v1␈↓#, v␈↓#v2␈↓#, v␈↓#v3␈↓#, v␈↓#v4␈↓#
New orbit {2 3 5 6}
To map A A A A --> {2 3 5 6}
1 labelling (B A A B A A)
Fig. 14␈↓α␈↓ αH→→ Figure X, Four labellings of Octahedral Skeleton with Labels (A A A A B B) ←←←←←␈↓
␈↓Example with Labels A B C D E F
Case 1. A --> orbit {1 4}
A --> 1
␈↓ ε⊂18␈↓
x
new group i, r␈↓#v1␈↓#, r␈↓#v2␈↓#, r␈↓#v3␈↓#
␈↓ new orbits A1 = {2 3 5 6}
A2 = {4}
Assign label B
Case 1.1. B --> orbit A1
B --> 2
new group i
new orbits {3} {4} {5} {6}
CDEF --> 3,4,5,6
4! = 24 labelling generable with no further
involvement of permutation group.
Case 1␈↓#v2␈↓#. B --> orbit A2
B --> 4
new group i, r1, r2, r3
new orbits AA1 = {2 3 5 6}
Case 1.2.1 C --> orbit AB1
C --> 2
new group i
new orbits {3} {5} {6}
DEF --> 3 5 6 6 labellings
Case 2. A --> orbit {2 3 5 6}
A --> 2
new group i,
new orbits B1 = {1 4}
B2 = {5}
B3 = {3 6}
Case 2.1. B --> orbit B1
B --> 1
new group i
new orbits {3} {4} {5} {6}
CDEF --> 3 4 5 6
24 labellings
Case 2.2. B --> orbit B2
B --> 5
new group i,? ???? fill in
new orbits BB1 = {1 4}
BB2 = {3 6}
Case 2.2.1. C --> orbit BB1
C --> 1
new group i
new orbits {3} {4} {6}
DEF --> 3 4 6 6 labellings
Case 2.2.2. C --> orbit BB2
C --> 3
new group i
new orbit {1} {4} {6}
␈↓ ε⊂19␈↓
x
DEF --> 1 4 6 6 labellings
␈↓ Case 2.3. B --> B3
B --> 3
new group i
new orbit {1} {4} {5} {6}
CDEF 1 4 5 6 24 labellings
90 unique labelings all together.
Verification: When all labels are different the total number of
labellings
(# labels)! 6!
= -------------- = ---- = 90 labellings
(size of group) 8
␈↓␈↓ ¬_␈↓αACKNOWLEDGEMENTS␈↓
␈↓We␈α
gratefully␈α
acknowledge␈α
the␈α
contributions␈α
of␈α
Jan␈α
Simek,␈α
who␈α
proposed␈α
the␈α
application␈α
in␈αPart␈α
D,
Larry␈α∂Hjelmeland␈α∂who␈α∂formulized␈α∂the␈α⊂initial␈α∂problem,␈α∂Professor␈α∂Harold␈α∂Brown,␈α∂who␈α⊂proved␈α∂the
correctness␈αof␈αthe␈αoriginal␈α
algorithms,␈αand␈αProfessor␈αJoshua␈α
Lederburg,␈αwhose␈αadvice␈αand␈α
guidance
has␈α
always␈α
been␈α
an␈α
inspiration.
␈↓ ε⊂20␈↓
x